OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5332–5337

Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene

Yamac Dikmelik, Caroline McEnnis, and James B. Spicer  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5332-5337 (2008)
http://dx.doi.org/10.1364/OE.16.005332


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond and nanosecond laser-induced breakdown spectroscopy (LIBS) were used to study trinitrotoluene (TNT) deposited on aluminum substrates. Over the detection wavelength range of 200–785 nm, we have observed emission from CN and C2 molecules as the marker for the explosive with femtosecond LIBS. In contrast, the signal for nanosecond LIBS of TNT is dominated by emission from the elemental constituents of the explosive. Aluminum emission lines from the substrate are also observed with both femtosecond and nanosecond excitation and indicate the role played by the substrate in the interaction.

© 2008 Optical Society of America

OCIS Codes
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:
Spectroscopy

History
Original Manuscript: February 7, 2008
Revised Manuscript: March 15, 2008
Manuscript Accepted: March 19, 2008
Published: April 2, 2008

Citation
Yamac Dikmelik, Caroline McEnnis, and James B. Spicer, "Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene," Opt. Express 16, 5332-5337 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5332


Sort:  Year  |  Journal  |  Reset  

References

  1. S. Nolte, "Micromachining," in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2003).
  2. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spectrosc. 55, 286, (2001). [CrossRef]
  3. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, "Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys," Spectrochim. Acta Part B 56, 987-1002 (2001). [CrossRef]
  4. J. M. Vadillo and J. J. Laserna, "Laser-induced plasma spectrometry: truly a surface analytical tool," Spectrochim. Acta Part B 59,147-161 (2004). [CrossRef]
  5. S. M. Hankin, A. D. Tasker, L. Robson, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhal, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Issac, and S. Jamison, "Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules," Rapid Commun. Mass Spectrom. 16, 111-116 (2002). [CrossRef]
  6. C. McEnnis, Y. Dikmelik, and J. B. Spicer, "Femtosecond laser-induced fragmentation and cluster formation studies of solid phase trinitrotoluene using time-of-flight mass spectrometry," Appl. Surf. Sci. 254, 557-562 (2007). [CrossRef]
  7. U. Panne, "Laser induced breakdown spectroscopy (LIBS) in environmental and process analysis," in Laser in Environmental and Life Sciences, Springer, P. Hering, J. P. Lay, and S. Stry, eds. (Springer-Verlag, Berlin, 2004), p. 99.
  8. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004). [CrossRef]
  9. F. C. De LuciaJr., R. S. Harmon, K. L. McNesby, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42, 6148-6152 (2003). [CrossRef]
  10. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006). [CrossRef]
  11. National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD.
  12. J. B. Lurie and M. A. El-Sayed, "Chemiluminescence of CN radicals formed from reaction of nitric oxide with multiphoton electronic excitation photofragments of toluene," J. Phys. Chem. 84, 3348-3351 (1980). [CrossRef]
  13. A. Portnov, S. Rosenwaks, and I. Bar, "Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air," Appl. Opt. 42, 2835-2842 (2003). [CrossRef] [PubMed]
  14. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 88, 063901 (2006). [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 084701 (2006). [CrossRef]
  16. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, "A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules," Rapid. Commun. Mass Spectrom. 9, 1522-1527 (1995). [CrossRef]
  17. C. Frischkorn and M. Wolf, "Femtochemistry at metal surfaces: nonadiabatic reaction dynamics," Chem. Rev. 106, 4207-4233 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited