OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5556–5564

Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo

Christoph J. Engelbrecht, Richard S. Johnston, Eric J. Seibel, and Fritjof Helmchen  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5556-5564 (2008)
http://dx.doi.org/10.1364/OE.16.005556


View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope’s headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.

© 2008 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 12, 2008
Revised Manuscript: March 28, 2008
Manuscript Accepted: April 1, 2008
Published: April 4, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Christoph J. Engelbrecht, Richard S. Johnston, Eric J. Seibel, and Fritjof Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5556


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Seibel, T. Soper, R. Johnston, and R. Glenny, "Ultrathin laser scanning bronchoscope and guidance system for the peripheral lung," Lung Cancer 49, S162-S162 (2005). [CrossRef]
  2. E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007). [CrossRef]
  3. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, "Technology insight: optical coherence tomography - current status and future development," Nature Clinical Practice Cardiovascular Medicine 3, 154-162 (2006). [CrossRef] [PubMed]
  4. Z. Yaqoob, J. G. Wu, E. J. McDowell, X. Heng, and C. H. Yang, "Methods and application areas of endoscopic optical coherence tomography," J. Biomed. Opt. 11, 063001 (2006). [CrossRef]
  5. F. Helmchen, "Miniaturization of fluorescence microscopes using fibre optics," Exp. Physiol. 87, 737-745 (2002). [CrossRef] [PubMed]
  6. A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004). [CrossRef] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  8. L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226, 195-206 (2007). [CrossRef] [PubMed]
  9. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004). [CrossRef] [PubMed]
  10. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2004). [CrossRef]
  11. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001). [CrossRef] [PubMed]
  12. H. Adelsberger, O. Garaschuk, and A. Konnerth, "Cortical calcium waves in resting newborn mice," Nat. Neurosci. 8, 988-990 (2005). [CrossRef] [PubMed]
  13. M. Murayama, E. Perez-Garci, H. R. Luscher, and M. E. Larkum, "Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats," J. Neurophysiol. 98, 1791-1805 (2007). [CrossRef] [PubMed]
  14. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  15. W. Denk and K. Svoboda, "Photon upmanship: why multiphoton imaging is more than a gimmick," Neuron 18, 351-357 (1997). [CrossRef] [PubMed]
  16. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nature Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  17. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001). [CrossRef]
  18. J. C. Jung and M. J. Schnitzer, "Multiphoton endoscopy," Opt. Lett. 28, 902-904 (2003). [CrossRef] [PubMed]
  19. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  20. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002). [CrossRef]
  21. F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002). [CrossRef] [PubMed]
  22. W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004). [CrossRef] [PubMed]
  23. B. A. Flusberg, J. C. Lung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  24. M. T. Myaing, D. J. MacDonald, and X. D. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  25. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005). [CrossRef] [PubMed]
  26. J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, (2007). [CrossRef]
  27. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006). [CrossRef] [PubMed]
  28. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006). [CrossRef] [PubMed]
  29. A. Monfared, N. H. Blevins, E. L. M. Cheung, J. C. Jung, G. Popelka, and M. J. Schnitzer, "In vivo Imaging of mammalian cochlear blood flow using fluorescence microendoscopy," Otology & Neurotology 27, 144-152 (2006). [CrossRef] [PubMed]
  30. P. Vincent, U. Maskos, I. Charvet, L. Bourgeais, L. Stoppini, N. Leresche, J. P. Changeux, R. Lambert, P. Meda, and D. Paupardin-Tritsch, "Live imaging of neural structure and function by fibred fluorescence microscopy," EMBO Rep 7, 1154-1161 (2006). [CrossRef] [PubMed]
  31. E. J. Seibel and Q. Y. J. Smithwick, "Unique features of optical scanning, single fiber endoscopy," Lasers Surg. Med. 30, 177-183 (2002). [CrossRef] [PubMed]
  32. E. J. Seibel, R. S. Johnston, and C. D. Melville, "A full-color scanning fiber endoscope," Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VI.Proceedings of the SPIE. 6083, 9-16 (2006).
  33. S. W. Grill and E. H. K. Stelzer, "Method to calculate lateral and axial gain factors of optical setups with a large solid angle," J. Opt. Soc. Am. A 16, 2658-2665 (1999). [CrossRef]
  34. C. J. Engelbrecht and E. H. K. Stelzer, "Resolution enhancement in a light-sheet-based microscope (SPIM)," Opt. Lett. 31, 1477-1479 (2006). [CrossRef] [PubMed]
  35. M. R. Sullivan, A. Nimmerjahn, D. V. Sarkisov, F. Helmchen, and S. S. Wang, "In vivo calcium imaging of circuit activity in cerebellar cortex," J. Neurophysiol. 94, 1636-1644 (2005). [CrossRef] [PubMed]
  36. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, "In vivo two-photon calcium imaging of neuronal networks," Proc. Natl. Acad. Sci. U S A 100, 7319-7324 (2003). [CrossRef] [PubMed]
  37. W. Göbel and F. Helmchen, "New angles on neuronal dendrites in vivo," J. Neurophysiol. 98, 3770-3779 (2007). [CrossRef] [PubMed]
  38. J.-F. Cardoso, "BLIND SOURCE SEPARATION and INDEPENDENT COMPONENT ANALYSIS," http://www.tsi.enst.fr/~cardoso/guidesepsou.html.
  39. D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, "Imaging large-scale neural activity with cellular resolution in awake, mobile mice," Neuron 56, 43-57 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Supplementary Material


» Media 1: MOV (4113 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited