OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5776–5781

Distribution of Time-Energy Entanglement over 100 km fiber using superconducting single-photon detectors

Qiang Zhang, Hiroki Takesue, Sae Woo Nam, Carsten Langrock, Xiuping Xie, Burm Baek, M. M. Fejer, and Yoshihisa Yamamoto  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5776-5781 (2008)
http://dx.doi.org/10.1364/OE.16.005776


View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this letter, we report an experimental realization of distributing entangled photon pairs over 100 km of dispersion-shifted fiber. In the experiment, we used a periodically poled lithium niobate waveguide to generate the time-energy entanglement and superconducting single-photon detectors to detect the photon pairs after 100 km. We also demonstrate that the distributed photon pairs can still be useful for quantum key distribution and other quantum communication tasks.

© 2008 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 2, 2008
Revised Manuscript: February 17, 2008
Manuscript Accepted: February 27, 2008
Published: April 10, 2008

Citation
Qiang Zhang, Hiroki Takesue, Sae Woo Nam, Carsten Langrock, Xiuping Xie, Burm Baek, M. M. Fejer, and Yoshihisa Yamamoto, "Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors," Opt. Express 16, 5776-5781 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5776


Sort:  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys,  74, 145 (2002). [CrossRef]
  3. I. Marcikic, H. de Ridmatten, W. Tittel, H. Zbinden, and N. Gisin, "Long distance teleportation of qubits at teclecommunication wavelengths," Nature 421, 509 (2003). [CrossRef] [PubMed]
  4. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, "Quantum teleportation across the Danube," Nature 430, 849 (2004). [CrossRef] [PubMed]
  5. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled Photon pairs over 13 km: towards satilite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005); [CrossRef] [PubMed]
  6. R. Ursin, F. Tiefenbacher, T. Schmitt-manderbach, H. Weier, T. Scheidl, M. Lindenthai, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nat. Phys. 3, 481 (2007). [CrossRef]
  7. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  8. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453 (2006). [CrossRef] [PubMed]
  9. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957 (2007). [CrossRef] [PubMed]
  10. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192WDMenvironment," postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.
  11. H. Hübel, M. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853 (2007). [CrossRef] [PubMed]
  12. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989). [CrossRef] [PubMed]
  13. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001). [CrossRef]
  14. R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S.-W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005). [CrossRef] [PubMed]
  15. K. Parameswaran, R. Route, J. Kurz, R. Roussev, M. Fejer and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179 (2002). [CrossRef]
  16. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, "Large-alphabet QKD using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007). [CrossRef] [PubMed]
  17. X. Xie and M. M. Fejer, "Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions," Opt. Lett. 31, 799-801 (2006). [CrossRef] [PubMed]
  18. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, "Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock," Opt. Express 15, 10288 (2007). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995), pp. 60-87.
  20. T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004) [CrossRef] [PubMed]
  21. J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited