OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5832–5837

Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry

Nemanya Sedoglavich, John C. Sharpe, Rainer Künnemeyer, and Sergey Rubanov  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5832-5837 (2008)
http://dx.doi.org/10.1364/OE.16.005832


View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Excitation and localization of surface plasmon polariton modes in metal-dielectric structures can be utilized to construct nanophotonic materials and devices with tuneable optical dispersion. We present a selective polariton generator (SPG) device that demonstrates switching of light transmission based on surface plasmon antennae principles. This polarization-sensitive structure selectively generates and transports polaritons of a desired wavelength through subwavelength apertures. Two of these SPGs have been combined around a nanohole into a new, single device that allows polarization and wavelength selective switching of transmission. The multi-state operation is confirmed by experiment results.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.2770) Diffraction and gratings : Gratings
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 3, 2008
Revised Manuscript: February 29, 2008
Manuscript Accepted: April 9, 2008
Published: April 11, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Nemanya Sedoglavich, John C. Sharpe, Rainer Kunnemeyer, and Sergey Rubanov, "Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry," Opt. Express 16, 5832-5837 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5832


Sort:  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  5. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  6. Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004). [CrossRef]
  8. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003). [CrossRef] [PubMed]
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  10. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  11. S.-H Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  12. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006). [CrossRef]
  13. C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007). [CrossRef] [PubMed]
  14. P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited