OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6240–6250

Towards a picosecond transform-limited nitrogen-vacancy based single photon source

Chun-Hsu Su, Andrew D. Greentree, and Lloyd C. L. Hollenberg  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6240-6250 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (699 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze a nitrogen-vacancy (NV-) colour centre based single photon source based on cavity Purcell enhancement of the zero phonon line and suppression of other transitions. Optimal performance conditions of the cavity-centre system are analyzed using Master equation and quantum trajectory methods. By coupling the centre strongly to a high-finesse optical cavity [Q~𝒪(104-105), V3] and using sub-picosecond optical excitation the system has striking performance, including effective lifetime of 70 ps, linewidth of 0.01 nm, near unit single photon emission probability and small [𝒪(10-5)] multi-photon probability.

© 2008 Optical Society of America

OCIS Codes
(160.2220) Materials : Defect-center materials
(160.4760) Materials : Optical properties
(230.0230) Optical devices : Optical devices
(230.6080) Optical devices : Sources

ToC Category:
Optical Devices

Original Manuscript: November 27, 2007
Revised Manuscript: January 30, 2008
Manuscript Accepted: March 22, 2008
Published: April 18, 2008

Chun-Hsu Su, Andrew D. Greentree, and Lloyd C. L. Hollenberg, "Towards a picosecond transform-limited nitrogen-vacancy based single photon source," Opt. Express 16, 6240-6250 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. S. Polzik, J. Carri, and H. J. Kimble, "Spectroscopy with squeezed light," Phys. Rev. Lett. 68, 3020-3023 (1992). [CrossRef] [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330-1336 (2004). [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature (London) 409, 46-52 (2001). [CrossRef] [PubMed]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," Rev. Mod. Phys. 79, 135-174 (2007). [CrossRef]
  5. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Quantum cryptography with a photon turnstile," Nature (London) 420, 762 (2002). [CrossRef] [PubMed]
  6. E. Waks, C. Santori, and Y. Yamamoto, "Security aspects of quantum key distribution with sub-Poisson light," Phys. Rev. A 66, 042315 (2002). [CrossRef]
  7. A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  8. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity, " Science 303, 1992-1994 (2004). [CrossRef] [PubMed]
  9. B. Barquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005). [CrossRef]
  10. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, "A single-photon server with just one atom," Nat. Phys. 3, 253-255 (2007). [CrossRef]
  11. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature (London) 431, 1075-1078 (2004). [CrossRef] [PubMed]
  12. C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, "Triggered source of single photons based on controlled single molecule fluorescence," Phys. Rev. Lett. 83, 2722-2725 (1999). [CrossRef]
  13. B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature (London) 407, 491-493 (2000). [CrossRef] [PubMed]
  14. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single-photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
  15. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, "Stable single-photon source in the near infrared," New J. Phys. 6, 98 (2004). [CrossRef]
  16. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, "Single photon emission from SiV centres in diamond produced by ion implantation," J. Phys. B: At. Mol. Opt. Phys. 39, 37-41 (2006). [CrossRef]
  17. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, "Room temperature triggered single-photon source in the near infrared," New J. Phys. 9, 434 (2007). [CrossRef]
  18. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  19. S. Kako, C. Santori, K. Hoshino, S. G.¨otzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200K," Nature Maters. 5, 887-892 (2006). [CrossRef] [PubMed]
  20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature (London) 445, 896-899 (2007). [CrossRef] [PubMed]
  21. A. J. Shields, "Semiconductor quantum light sources," Nat. Photonics 1, 215-223 (2007). [CrossRef]
  22. A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, "Critical components for diamond-based quantum coherent devices," J. Phys.: Cond. Matt. 18, S825-S842 (2006). [CrossRef]
  23. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, "Strongly interacting polaritons in coupled arrays of cavities," Nat. Phys. 2, 849-855 (2006). [CrossRef]
  24. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, "Quantum phase transitions of light," Nat. Phys. 2, 856-861 (2006). [CrossRef]
  25. D. G. Angelakis, M. F. Santos, and S. Bose, "Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays," Phys. Rev. A 76, 031805(R) (2007). [CrossRef]
  26. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, "Generation of single color centers by focused nitrogen implantation," Appl. Phys. Lett. 87, 261909 (2005). [CrossRef]
  27. D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, "Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions," Appl. Phys. Lett. 86, 202101 (2005). [CrossRef]
  28. J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, "Implantation of labelled single nitrogen vacancy centres in diamond using15N," Appl. Phys. Lett. 88, 23113 (2006). [CrossRef]
  29. J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, "Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals," Nano Lett. 7, 3433-3437 (2007). [CrossRef] [PubMed]
  30. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, "Experimental realization of Wheeler??s delayed-choice gedanken experiment," Science 315, 966-968 (2007). [CrossRef] [PubMed]
  31. N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104303 (2006). [CrossRef]
  32. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002). [CrossRef] [PubMed]
  33. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, "Experimental open-air quantum key distribution with a single-photon source," New J. Phys. 6, 92 (2004). [CrossRef]
  34. C. K. Hong, Z. Y Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  35. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, "Optimal photons for quantum-information processing," Phys. Rev. A 72, 052332 (2005). [CrossRef]
  36. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for quantum logic," Phys. Rev. Lett. 75, 4710-4713 (1995). [CrossRef] [PubMed]
  37. L.-M. Duan and H. J. Kimble, "Scalable photonic quantum computation through cavity-assisted interactions," Phys. Rev. Lett. 92, 127902 (2004). [CrossRef] [PubMed]
  38. L.-M. Duan, B. Wang, and H. J. Kimble, "Robust quantum gates on neutral atoms with cavity-assisted photon scattering," Phys. Rev. A 72, 032333 (2005). [CrossRef]
  39. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef] [PubMed]
  40. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207-210 (2005). [CrossRef]
  41. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007). [CrossRef]
  42. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, "Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond," Advanced Materals (Weinheim, Ger.) 17, 2427-2430 (2005). [CrossRef]
  43. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  44. J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, "Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films," J. Vac. Sci. Technol. B 24, 50-54 (2006). [CrossRef]
  45. I. Bayn and J. Salzman, "High-Q photonic crystal nanocavities on diamond for quantum electrodynamics," Eur. Phys. J. Appl. Phys. 37, 19-24 (2007). [CrossRef]
  46. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  47. G. Davies and M. F. Hamer, "Optical studies of the 1.945eV vibronic band in diamond," Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285-298 (1976). [CrossRef]
  48. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett. 92, 076401 (2004). [CrossRef] [PubMed]
  49. Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, "The excited state structure of the nitrogen-vacancy center in diamond," http://arxiv.org/abs/cond-mat/0610357 (2006).
  50. E. T. Jaynes and F. W. Cummings, "Comparison of quantum and semiclassical radiation theory with application to the beam maser," Proc. IEEE 51, 89-109 (1963). [CrossRef]
  51. B. W. Shore and P. L. Knight, "The Jaynes-Cummings model," J. Mod. Opt. 40, 1195-1238 (1993). [CrossRef]
  52. C. K. Law and H. J. Kimble, "Deterministic generation of a bit-stream of single-photon pulses," J. Mod. Opt. 44, 2067-2074 (1997).
  53. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  54. S. Haroche and J. M. Raimond, "Radiative properties of Rydberg states in resonant cavities," in Advances in Atomic and Molecular Physics, Vol. 20, D. Bates and B. Bederson, eds., (Academic, 1985), pp. 350-411.
  55. J.-M. Gerard and B. Gayral, "Strong Purcell effector for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999). [CrossRef]
  56. M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, "Cavity-assisted spontaneous emission as a singlephoton source: Pulse shape and efficiency of one-photon Fock state preparation," http://arxiv.org/abs/0709.2998 (2007).
  57. L. Tian and H. J. Carmichael, "Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom," Phys. Rev. A 46, R6801-R6804 (1992). [CrossRef] [PubMed]
  58. H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, 1993).
  59. Y. Dumeige, F. Treussart, R. Alleaume, T. Gacoin, J.-F. Roch, and P. Grangier, "Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination," J. Lumin. 109, 61- 67 (2004). [CrossRef]
  60. Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark shift control of single optical centres in diamond," Phys. Rev. Lett. 97, 083002 (2006). [CrossRef] [PubMed]
  61. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A 73, 013818 (2006). [CrossRef]
  62. M. J. Fernee, H. Rubinsztein-Dunlop, and G. J. Milburn, "Improving single-photon sources with Stark tuning," Phys. Rev. A 75, 043815 (2007). [CrossRef]
  63. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited