OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6285–6301

Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6285-6301 (2008)
http://dx.doi.org/10.1364/OE.16.006285


View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Results of detailed experimental investigations of the power and sweeping speed dependent resonance bandwidth and resonance wavelength shift in microsphere resonators are presented. The experimental manifestations of the nonlinear effects for the different sweeping modes are considered and a possibility of separation between the Kerr and thermal nonlinearities is discussed. As it follows from the detailed comparison between theory and experiments, a single mode theoretical model, based on the mean field approximation, gives a satisfactory description of the experimental data only at small coupling powers and fast sweeping. For example, the values of Kerr nonlinearity, obtained through the fitting of the experimental data, are far from the expected, commonly used ones.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 18, 2007
Revised Manuscript: February 25, 2008
Manuscript Accepted: March 2, 2008
Published: April 21, 2008

Citation
C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, "Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds," Opt. Express 16, 6285-6301 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and nonlinear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989). [CrossRef]
  2. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisc resonator," Opt. Express 14, 817-831 (2006). [CrossRef] [PubMed]
  3. V. S. Ilchenko, M. L. Gorodetsky, X. S. Yao, and L. Maleki, "Microtorus: a high-finess microcavity with whispering-gallery modes," Opt. Lett. 26, 256-258 (2001). [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 412, 925-928 (2001).
  5. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature 425, 944-947 (2003). [PubMed]
  6. B. E. Little, J. P. Laine, and H. A. Haus, "Analytical theory of coupling from tapered fibers and half-blocks into microsphere resonators," J. Lightwave Technol. 17, 704-715 (1999). [CrossRef]
  7. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, "Quantum-nondemolition measurements," Science 209, 547-557 (1980). [CrossRef] [PubMed]
  8. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  9. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultra-low threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-632 (2002). [CrossRef] [PubMed]
  10. L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled Erbium Microlaser on a chip," Appl. Phys. Lett. 83, 825-826 (2003). [CrossRef]
  11. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity induced optical parametric oscillation in a ultra-high-Q toroid microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  12. V. Follmer, D. Braun, A. Libchaber, M. Koshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  13. V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).
  14. J. A. Stratton, Electromagnetic theory (McGrow-Hill, New York, 1941).
  15. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, V. S. Ilchenko, "Nonstationary nonlinear effects in optical microspheres," J. Opt. Soc. Am. B 22, 459-465 (2005). [CrossRef]
  16. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behaviour and thermal self-stability of microcavities," Opt. Express 12, 4742-4750 (2004). [CrossRef] [PubMed]
  17. Yu. A. Kuznetcov, Elements of Applied Bifurcation Theory, 2nd ed. (Springer-Verlag, New-York, 1998), p. 135.
  18. R. W. Boyd, Nonlinear Optics, Second Edition, (Academic Press, 2003).
  19. http://de.wikipedia.org/wiki/quarzglas (last access 10.11.2006).
  20. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, "Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited