OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6331–6339

Microlasers based on effective index confined slow light modes in photonic crystal waveguides

Samuele Gardin, Frederic Bordas, Xavier Letartre, Christian Seassal, Adel Rahmani, Renato Bozio, and Pierre Viktorovitch  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6331-6339 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design, theory and experimental implementation of a low modal volume microlaser based on a line-defect 2D-photonic crystal waveguide. The lateral confinement of low-group velocity modes is controlled by the post-processing of 1 to 3µm wide PMMA strips on top of two dimensional photonic crystal waveguides. Modal volume around 1.3 (λ/n)3 can be achieved using this scheme. We use this concept to fabricate microlaser devices from an InP-based heterostructure including InAs0.65P0.35 quantum wells emitting around 1550nm and bonded onto a fused silica wafer. We observe stable, room-temperature laser operation with an effective lasing threshold around 0.5mW.

© 2008 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2008
Revised Manuscript: March 12, 2008
Manuscript Accepted: March 14, 2008
Published: April 21, 2008

Samuele Gardin, Frederic Bordas, Xavier Letartre, Christian Seassal, Adel Rahmani, Renato Bozio, and Pierre Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331-6339 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B 65, 195306, 2002. [CrossRef]
  2. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d??Yerville, D. Cassagne, et J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 815102-5104 (2002). [CrossRef]
  3. A. Sugitatsu and S. Noda, "Room temperature operation of a two dimensional photonic crystal slab defect-waveguide-laser with optical pump," Electron. Lett. 39, 123-125 (2003). [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  5. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett 88, 041112 (2006). [CrossRef]
  6. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, "Confinement of band edge modes in Photonic Crystals," Opt. Express 15, 10890-10902 (2007). [CrossRef] [PubMed]
  7. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, M. J. Steel, and A. Rahmani, "Room-Temperature InAs/InP Quantum-Dot Photonic Crystal Microlasers Using Cavity-Confined Slow Light," CLEO/QELS May 7-11 2007, Baltimore.
  8. M. H. Shih, W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O'Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006). [CrossRef]
  9. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248-17253 (2007). [CrossRef] [PubMed]
  10. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  11. B. S. Song, T. Asano, and S. Noda, "Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities," New J. Phys. 8, 209 (2006). [CrossRef]
  12. M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, "Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture," Phys. Rev. B 65, 125318 (2002). [CrossRef]
  13. http://alioth.debian.org/projects/tessa/.
  14. C. Seassal, C. Monat, J. Mouette, E . Touraille, B. Ben Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: Toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. in Quantum Electron. 11, 395-407 (2005). [CrossRef]
  15. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "An analytical modeling and an experimental investigation of 2D Photonic Crystal Micro-lasers : defect state (micro-cavity) versus band edge state (distributed feed-back) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited