OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6387–6396

Proof-of-principle of surface detection with air-guided quantum cascade lasers

Virginie Moreau, Raffaele Colombelli, Raviv Perahia, Oskar Painter, Luke R. Wilson, and Andrey B. Krysa  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6387-6396 (2008)
http://dx.doi.org/10.1364/OE.16.006387


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 12, 2008
Revised Manuscript: April 1, 2008
Manuscript Accepted: April 5, 2008
Published: April 21, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Virginie Moreau, Raffaele Colombelli, Raviv Perahia, Oskar Painter, Luke R. Wilson, and Andrey B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 6387-6396 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002). [CrossRef]
  2. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994). [CrossRef] [PubMed]
  3. M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002). [CrossRef] [PubMed]
  4. J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003). [CrossRef]
  5. M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004). [CrossRef]
  6. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006). [CrossRef]
  7. A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007). [CrossRef]
  8. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002). [CrossRef]
  9. C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000). [CrossRef]
  10. F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).
  11. F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).
  12. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003). [CrossRef]
  13. J. Z. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005). [CrossRef] [PubMed]
  14. C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).
  15. B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000). [CrossRef] [PubMed]
  16. A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001). [CrossRef]
  17. S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004). [CrossRef]
  18. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997). [CrossRef]
  19. S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006). [CrossRef]
  20. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007). [CrossRef]
  21. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006). [CrossRef] [PubMed]
  22. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006). [CrossRef]
  23. P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007). [CrossRef]
  24. M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007). [CrossRef] [PubMed]
  25. R. Perahia, O. Painter, V. Moreau, and R. Colombelli, "Design of quantum cascade lasers for intra-cavity sensing in the mid-infrared," in preparation.
  26. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007). [CrossRef] [PubMed]
  27. V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007). [CrossRef]
  28. A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited