OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6408–6416

Silica-based monolithic sensing plates for waveguide-mode sensors

Makoto Fujimaki, Carsten Rockstuhl, Xiaomin Wang, Koichi Awazu, Junji Tominaga, Yuuki Koganezawa, Yoshimichi Ohki, and Tetsuro Komatsubara  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6408-6416 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a monolithic sensing plate for a waveguide-mode sensor. The plate consists of a SiO2 glass substrate and a thin silicon layer the surface of which is thermally oxidized to form a SiO2 glass waveguide. We confirmed that the sensing plate is suitable for high-sensitivity detection of molecular adsorption at the waveguide surface. In addition, a significant enhancement of the sensitivity of the sensor was achieved by perforating the waveguide with holes with diameters of a few tens of nanometers by selective etching of latent tracks created by swift heavy-ion irradiation. Possible strategies for optimizing the plate are discussed.

© 2008 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(230.7370) Optical devices : Waveguides
(310.2790) Thin films : Guided waves
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote sensing and sensors

Original Manuscript: January 28, 2008
Manuscript Accepted: March 22, 2008
Published: April 22, 2008

Makoto Fujimaki, Carsten Rockstuhl, Xiaomin Wang, Koichi Awazu, Junji Tominaga, Yuuki Koganezawa, Yoshimichi Ohki, and Tetsuro Komatsubara, "Silica-based monolithic sensing plates for waveguide-mode sensors," Opt. Express 16, 6408-6416 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Knoll, "Optical characterization of organic thin films and interfaces with evanescent waves," MRS Bulletin 16, 29??39 (1991).
  2. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569??638 (1998). [CrossRef]
  3. M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993). [CrossRef]
  4. R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998). [CrossRef]
  5. K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004). [CrossRef]
  6. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007). [CrossRef]
  7. K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007). [CrossRef] [PubMed]
  8. E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313??324 (1971). [CrossRef]
  9. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published). [PubMed]
  10. T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993). [CrossRef]
  11. T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994). [CrossRef]
  12. Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995). [CrossRef]
  13. B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965). [CrossRef]
  14. R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002). [CrossRef]
  15. K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000). [CrossRef]
  16. E. D. Palik (Ed.), Handbook of optical constants of solids I, II, & III (Academic Press, San Diego, 1998).
  17. A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons, Inc., New York, London, Sydney, 1967).
  18. S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited