OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6425–6432

Low Loss (~6.45dB/cm) Sub-Micron Polycrystalline Silicon Waveguide Integrated with Efficient SiON Waveguide Coupler

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6425-6432 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this communication, the sub-micron size polycrystalline silicon (poly-Si) single mode waveguides are fabricated and integrated with SiON waveguide coupler by deep UV lithography. The propagation loss of poly-Si waveguide and coupling loss with optical flat polarization-maintaining fiber (PMF) are measured. For whole C-band (i.e., λ~1520-1565nm), the propagation loss of TE mode is measured to ~6.45±0.3dB/cm. The coupling loss with optical flat PMF is ~3.4dB/facet for TE mode. To the best of our knowledge, the propagation loss is among the best reported results. This communication discusses the factors reducing the propagation loss, especially the effect of the refractive index contrast. Compared to the SiO2 cladding, poly-Si waveguide with SiON cladding exhibits lower propagation loss.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: January 7, 2008
Revised Manuscript: February 15, 2008
Manuscript Accepted: February 18, 2008
Published: April 22, 2008

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler," Opt. Express 16, 6425-6432 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986). [CrossRef]
  2. P. Kyle, S. Bradley, and L. Michal, "Polysilicon Photonic Resonators for Large-Scale 3D Integration of Optical Networks," Opt. Express 15, 17283-17290 (2007). [CrossRef]
  3. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High Speed Silicon Mach-Zehnder Modulator," Opt. Express 13, 3129-3135 (2005). [CrossRef] [PubMed]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-Speed Optical Modulation based on Carrier Depletion in a Silicon Waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  6. P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007). [CrossRef]
  7. S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).
  8. K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005). [CrossRef]
  9. A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005). [CrossRef]
  10. L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007). [CrossRef]
  11. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal, single, and multiple slot waveguides optical transmission at λ = 1550 nm," Opt. Express 15, 17967-17972 (2007). [CrossRef] [PubMed]
  12. M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).
  13. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007). [CrossRef]
  14. W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983). [CrossRef]
  15. R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).
  16. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996). [CrossRef]
  17. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996). [CrossRef]
  18. L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000). [CrossRef]
  19. F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited