OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6579–6585

Photonic crystal alloys: a new twist in controlling photonic band structure properties

Hee Jin Kim, Dong-Uk Kim, Young-Geun Roh, Jaejun Yu, Heonsu Jeon, and Q-Han Park  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6579-6585 (2008)
http://dx.doi.org/10.1364/OE.16.006579


View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We identified new photonic structures and phenomenon that are analogous to alloy crystals and the associated electronic bandgap engineering. From a set of diamond-lattice microwave photonic crystals of randomly mixed silica and alumina spheres but with a well defined mixing composition, we observed that both bandedges of the L-point bandgap monotonically shifted with very little bowing as the composition was varied. The observed results were in excellent agreement with the virtual crystal approximation theory originally developed for electronic properties of alloy crystals. This result signifies the similarity and correspondence between photonics and electronics.

© 2008 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 14, 2008
Revised Manuscript: April 20, 2008
Manuscript Accepted: April 22, 2008
Published: April 24, 2008

Citation
Hee J. Kim, Dong-Uk Kim, Young-Geun Roh, Jaejun Yu, Heonsu Jeon, and Q-Han Park, "Photonic crystal alloys: a new twist in controlling photonic band structure properties," Opt. Express 16, 6579-6585 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. E. Yablonovitch and T. J. Gmitter, "Photonic band structure: the face-centered-cubic case," Phys. Rev. Lett. 63, 1950-1953 (1989). [CrossRef] [PubMed]
  4. E. Yablonovitch and T. J. Gmitter, "Donor and acceptor modes in photonic band structures," Phys. Rev. Lett. 67, 3380-3383 (1991). [CrossRef] [PubMed]
  5. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  6. T. Schwartz, G. Bartal, S. Fishman, M. Segev, "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature 446, 52-55 (2007). [CrossRef] [PubMed]
  7. http://nobelprize.org/nobel_prizes/physics/laureates/2000/
  8. H. J. Kim, Y.-G. Roh, and H. Jeon, "Photonic bandgap engineering in mixed colloidal photonic crystals," Jpn. J. Appl. Phys. 44, L1259-L1262 (2005). [CrossRef]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 1995).
  10. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998). [CrossRef] [PubMed]
  11. M. Bayindir and E. Ozbay, "Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures," Appl. Phys. Lett. 81, 4514-4516 (2002). [CrossRef]
  12. Y.-G. Roh, S. Yoon, H. Jeon, S. -H. Han, and Q. -H. Park, "Experimental verification of cross talk reduction in photonic crystal waveguide crossings," Appl. Phys. Lett. 85, 3351-3353 (2004). [CrossRef]
  13. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative index materials: new frontiers in optics," Adv. Mater. 18, 1941-1952 (2006). [CrossRef]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  15. L. Nordheim, "The electron theory of metals," Ann. Phys., Lpz. 9, 607-641 (1931). [CrossRef]
  16. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  17. D. Richardson, "The composition dependence of energy bands in mixed semi- conductor systems with zincblende structures," J. Phys. C: Solid State Phys. 4, L289-L292 (1971). [CrossRef]
  18. L. Vegard, "Die Konstitution der Mischkristalle und die Raumfüllung der Atome," Z. Phys. 5, 17-26 (1921) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited