OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 1 — Jan. 5, 2009
  • pp: 136–149

Comparison of birefringent electric split-ring resonator and meanderline

Andrew C. Strikwerda, Kebin Fan, Hu Tao, Daniel V. Pilon, Xin Zhang, and Richard D. Averitt  »View Author Affiliations

Optics Express, Vol. 17, Issue 1, pp. 136-149 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2872 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated a quarter-wave plate from a single layer of birefringent electric split-ring resonators (ELC). For comparison, an appropriately scaled double layer meanderline structure was fabricated. At the design frequency of 639 GHz, the ELC structure achieves 99.9% circular polarization while the meanderline achieves 99.6%. The meanderline displays a larger bandwidth of operation, attaining over 99% circular polarization from 615 – 743 GHz, while the ELC achieves 99% from 626 – 660 GHz. However, both are broad enough for use with CW sources making ELCs a more attractive choice due to the ease of fabrication. Both samples are free standing with a total thickness of 70μm for the meanderline structure and a mere 20μm for the ELC highlighting the large degree of birefringence exhibited with metamaterial structures.

© 2009 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.3090) Physical optics : Infrared, far
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 24, 2008
Revised Manuscript: December 18, 2008
Manuscript Accepted: December 18, 2008
Published: December 23, 2008

Andrew C. Strikwerda, Kebin Fan, Hu Tao, Daniel V. Pilon, Xin Zhang, and Richard D. Averitt, "Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies," Opt. Express 17, 136-149 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  5. L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973). [CrossRef]
  6. L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992). [CrossRef]
  7. D. You, R. R. Jones, D. R. Dykaar, and P. H. Bucksbaum, "Generation of High-Power Half-Cycle 500 Femtosecond Electromagnetic Pulses," Opt. Lett. 18, 290-292 (1993). [CrossRef] [PubMed]
  8. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000). [CrossRef]
  9. Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996). [CrossRef]
  10. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996). [CrossRef]
  11. P. C. M. Planken, H. Nienhuys, H. J. Bakker, and T. Wenckebach, "Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe," J. Opt. Soc. Am. B 18, 313-317 (2001) [CrossRef]
  12. M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005) [CrossRef]
  13. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  14. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995). [CrossRef] [PubMed]
  15. D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997). [CrossRef]
  16. R. H. Jacobsen, D. M. Mittleman and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996). [CrossRef] [PubMed]
  17. T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical transactions - Royal Society A 362, 365-377 (2004). [CrossRef]
  18. N. Kanda, K. Konishi, and M Kuwata-Gonokami, "Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns," Opt. Express 15, 11117-11125 (2007). [CrossRef] [PubMed]
  19. J. Masson and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett. 31, 265-267 (2006). [CrossRef] [PubMed]
  20. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005). [CrossRef]
  21. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  22. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  23. H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  24. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007). [CrossRef]
  25. G. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, (1989).
  26. M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).
  27. J.-F. Z¨urcher, "A meander-line polarizer covering the full E-band (60-90 GHz)," Microwave and Optical Technology Letters 18, 320-323 (1998). [CrossRef]
  28. J. S. Tharp, J. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, "Demonstration of a single-layer meanderline phase retarder at infrared," Opt. Lett. 31, 2687-2689 (2006). [CrossRef] [PubMed]
  29. J. S. Tharp, J. Alda, and G. D. Boreman, "Off-axis behavior of an infrared meander-line waveplate," Opt. Lett. 32, 2852-2854 (2007). [CrossRef] [PubMed]
  30. H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008). [CrossRef] [PubMed]
  31. H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004). [CrossRef]
  32. H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004). [CrossRef]
  33. M. Reid and R. Fedosejevs, "Terahertz birefringence and attenuation properties of wood and paper," Appl. Opt. 45, 2766-2772 (2006). [CrossRef] [PubMed]
  34. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003). [CrossRef]
  35. C. Hsieh, R. Pan, T. Tang, H. Chen, and C. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett. 31, 1112-1114 (2006). [CrossRef] [PubMed]
  36. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, "Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna," Opt. Express 14, 4486-4493 (2006). [CrossRef] [PubMed]
  37. C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007). [CrossRef]
  38. H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008). [CrossRef]
  39. D. Goldstein, Polarized Light, 2nd ed. (Marcel-Dekker, New York, 2003). [CrossRef]
  40. G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Cambridge Philos. Soc. 9, 399 (1852).
  41. R. C. Jones, "New calculus for the treatment of optical systems," J. Opt. Soc. Am. 31, 488-493, (1941). [CrossRef]
  42. C. Caloz and T. Itoh, Electromagnetic Metamaterials, (Wiley, Hoboken, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1571 KB)     
» Media 2: AVI (1750 KB)     
» Media 3: AVI (3740 KB)     
» Media 4: AVI (2364 KB)     
» Media 5: AVI (3897 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited