OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 7790–7799

Enhanced modulation bandwidth of nanocavity light emitting devices

Erwin K. Lau, Amit Lakhani, Rodney S. Tucker, and Ming C. Wu  »View Author Affiliations


Optics Express, Vol. 17, Issue 10, pp. 7790-7799 (2009)
http://dx.doi.org/10.1364/OE.17.007790


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the direct modulation bandwidth of nano-cavity light emitting devices (nLEDs) can greatly exceed that of any laser. By performing a detailed analysis, we show that the modulation bandwidth can be increased by the Purcell effect, but that this enhancement occurs only when the device is biased below the lasing threshold. The maximum bandwidth is shown to be inversely proportional to the square root of the modal volume, with sub-wavelength cavities necessary to exceed conventional laser speeds.

© 2009 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.5960) Lasers and laser optics : Semiconductor lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 13, 2009
Revised Manuscript: April 14, 2009
Manuscript Accepted: April 19, 2009
Published: April 27, 2009

Citation
Erwin K. Lau, Amit Lakhani, Rodney S. Tucker, and Ming C. Wu, "Enhanced modulation bandwidth of nanocavity light emitting devices," Opt. Express 17, 7790-7799 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985). [CrossRef]
  2. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  3. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007). [CrossRef]
  4. T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997). [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  6. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  7. S.-W. Chang, C.-Y. A. Ni, and S.-L. Chuang, "Theory for bowtie plasmonic nanolasers," Opt. Express 16, 10580-10595 (2008). [CrossRef] [PubMed]
  8. E. Feigenbaum and M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007). [CrossRef] [PubMed]
  9. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005). [CrossRef]
  10. H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006). [CrossRef] [PubMed]
  11. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  12. E. Yablonovitch, (manuscript in progress).
  13. J. M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999). [CrossRef]
  14. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., New York, 1995), p. 143.
  15. G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991). [CrossRef]
  16. E. Yablonovitch, "Light Emission in Photonic Crystal Micro-Cavities," in Confined Electrons and Photons: New Physics and Applications, E. Burstein and C. Weisbuch, eds. (Plenum Press, New York, 1994), pp. 635-646.
  17. M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980). [CrossRef]
  18. M. Asada, "Intraband relaxation time in quantum-well lasers," IEEE J. Quantum Electron. 25, 2019-2026 (1989). [CrossRef]
  19. A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007). [CrossRef]
  20. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008). [CrossRef]
  21. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007). [CrossRef]
  22. H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989). [CrossRef]
  23. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006). [CrossRef]
  24. Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987). [CrossRef]
  25. J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990). [CrossRef]
  26. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000). [CrossRef]
  27. S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007). [CrossRef]
  28. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998). [CrossRef]
  29. J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998), pp. 350-357.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited