OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 10 — May. 11, 2009
  • pp: 8081–8097

Coherent interference effects in a nano-assembled diamond NV center cavity-QED system

Paul E. Barclay, Charles Santori, Kai-Mei Fu, Raymond G. Beausoleil, and Oskar Painter  »View Author Affiliations

Optics Express, Vol. 17, Issue 10, pp. 8081-8097 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1864 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diamond nanocrystals containing NV color centers are positioned with 100-nanometer-scale accuracy in the near-field of a high-Q SiO2 microdisk cavity using a fiber taper. The cavity modified nanocrystal photoluminescence is studied, with Fano-like quantum interference features observed in the far-field emission spectrum. A quantum optical model of the system is proposed and fit to the measured spectra, from which the NV-zero phonon line coherent coupling rate to the microdisk is estimated to be 28 MHz for a nearly optimally placed nanocrystal.

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.1670) Quantum optics : Coherent optical effects
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Quantum Optics

Original Manuscript: February 4, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 20, 2009
Published: April 29, 2009

Paul E. Barclay, Charles Santori, Kai-Mei Fu, Raymond G. Beausoleil, and Oskar Painter, "Coherent interference effects in a nano-assembled diamond NV center cavity-QED system," Opt. Express 17, 8081-8097 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  2. R. W. Wood, "On the remarkable case of uneven distribution of a light in a diffractived grating spectrum," Philos. Mag. 4, 396-402 (1902).
  3. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003). [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  5. A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046 606 (2003). [CrossRef]
  6. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003). [CrossRef] [PubMed]
  7. H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002). [CrossRef] [PubMed]
  8. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 1999), 1st edn.
  9. R. Harbers, S. Jochim, N. Moll, R. F. Mahrt, D. Erni, J. A. Hoffnagle, and W. D. Hinsberg, "Control of Fano line shapes by means of photonic crystal structures in a dye-doped polymer," Appl. Phys. Lett. 90, 201 105 (2007). [CrossRef]
  10. J. Knight, G. Cheung, F. Jacques, and T. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  11. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997). [CrossRef]
  12. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent Population Trapping of Single Spins in Diamond under Optical Excitation," Phys. Rev. Lett. 97, 247 401 (2006). [CrossRef]
  13. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, "Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate," Phys. Rev. Lett. 93, 130 501 (2004). [CrossRef]
  14. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007). [CrossRef] [PubMed]
  15. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006). [CrossRef] [PubMed]
  16. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Nonclassical radiation from diamond nanocrystals," Phys. Rev. A 64, 061 802 (2001). [CrossRef]
  17. S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001). [CrossRef] [PubMed]
  18. Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006). [CrossRef] [PubMed]
  19. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, "Observation of whispering gallery modes in nanocrystalline diamond microdisks," Appl. Phys. Lett.  90, 081 110 (2007). [CrossRef]
  20. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201 112 (2007).
  21. S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008). [CrossRef] [PubMed]
  22. M. W. McCutcheon and M. Loncar, "Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19 136-145 (2008). [CrossRef]
  23. Y. Shen, T. M. Sweeney, and H. Wang, "Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals," Phys. Rev. B 77, 033 201 (2008). [CrossRef]
  24. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005). [CrossRef]
  25. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark Shift Control of Single Optical Centers in Diamond," Phys. Rev. Lett. 97, 083 002 (2006). [CrossRef]
  26. N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104 303 (2006). [CrossRef]
  27. G. Davies, "Vibronic spectra in diamond," J. Phys. C: Solid State Phys. 7, 3797-3809 (1974). [CrossRef]
  28. V. V. Klimov and M. Ducloy, "Spontaneous emission rate of an excited atom placed near a nanofiber," Phys. Rev. A 69, 013812 (2004). [CrossRef]
  29. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032 509 (2005).
  30. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995). [CrossRef] [PubMed]
  31. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, "Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light," Phys. Rev. Lett. 99, 173 603 (2007). [CrossRef]
  32. L. M. Duan and H. J. Kimble, "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions," Phys. Rev. Lett.12, 127 902 (2004).
  33. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996). [CrossRef] [PubMed]
  34. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002). [CrossRef]
  35. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  36. M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983). [CrossRef]
  37. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited