OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 8970–8982

A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability

Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 8970-8982 (2009)
http://dx.doi.org/10.1364/OE.17.008970


View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the three-cornered-hat method to evaluate the absolute frequency stabilities of three different ultrastable reference cavities, one of which has a vibration-insensitive design that does not even require vibration isolation. An Nd:YAG laser and a diode laser are implemented as light sources. We observe ~ 1 Hz beat note linewidths between all three cavities. The measurement demonstrates that the vibration-insensitive cavity has a good frequency stability over the entire measurement time from 100 μs to 200 s. An absolute, correlation-removed Allan deviation of 1.4 × 10−15 at 1 s of this cavity is obtained, giving a frequency uncertainty of only 0.44 Hz.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.2020) Lasers and laser optics : Diode lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 3, 2009
Revised Manuscript: May 10, 2009
Manuscript Accepted: May 10, 2009
Published: May 13, 2009

Citation
Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang, "A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability," Opt. Express 17, 8970-8982 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-8970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place," Science 319,1808-1812 (2008). [CrossRef] [PubMed]
  2. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, "Sr lattice clock at 1×10?16 fractional uncertainty by remote optical evaluation with a Ca clock," Science 319,1805-1808 (2008). [CrossRef] [PubMed]
  3. T. Schneider, E. Peik, and C. Tamm, "Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions," Phys. Rev. Lett. 94,230801 (2005). [CrossRef] [PubMed]
  4. Y. H. Wang, T. Liu, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, "Improved absolute frequency measurement of the 115In+ 5s2 1S0-5s5p 3P0 narrowline transition: progress towards an optical frequency standard," Laser Phys. 17,1017-1024 (2007). [CrossRef]
  5. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31,97-105 (1983). [CrossRef]
  6. C. Salomon, D. Hils, and J. L. Hall, "Laser stabilization at the millihertz level," J. Opt. Soc. Am. B 5,1576-1587 (1988). [CrossRef]
  7. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, "Visible lasers with subhertz linewidths," Phys. Rev. Lett. 82,3799-3802 (1999). [CrossRef]
  8. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, "Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10?15," Opt. Lett. 32,641-643 (2007). [CrossRef] [PubMed]
  9. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, "Thermal-noise-limited optical cavity," Phys. Rev. A 77,033847 (2008). [CrossRef]
  10. J. Millo, S. Dawkins, R. Chicireanu, D. Varela Magalhães, C. Mandache, D. Holleville, M. Lours, S. Bize, P. Lemonde, and G. Santarelli, "Ultra-stable optical cavities: design and experiments at LNE-SYRTE," Proc. 2008 IEEE IFCS, 110-114 (2008).
  11. S. A. Webster, M. Oxborrow, and P. Gill, "Subhertz-linewidth Nd:YAG laser," Opt. Lett. 29,1497-1499 (2004). [CrossRef] [PubMed]
  12. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, "Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-P’erot cavities," Phys. Rev. A 77,053809 (2008). [CrossRef]
  13. T. Liu, Y. N. Zhao, V. Elman, A. Stejskal, and L. J. Wang, "Characterization of the absolute frequency stability of an individual reference cavity," Opt. Lett. 34,190-192 (2009). [CrossRef] [PubMed]
  14. L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, "Vibration-induced elastic deformation of Fabry-Perot cavities," Phys. Rev. A 74,053801 (2006). [CrossRef]
  15. A. Yu. Nevsky, M. Eichenseer, J. von Zanthier, and H. Walther, "A Nd:YAG Laser with short-term frequency stability at the Hertz-level," Opt. Commun. 210,91-100 (2002). [CrossRef]
  16. T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, "Narrow linewidth light source for an ultraviolet optical frequency standard," Appl. Phys. B 87,227-232 (2007). [CrossRef]
  17. T. Nazarova, F. Riehle, and U. Sterr, "Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser," Appl. Phys. B 83,531-536 (2006). [CrossRef]
  18. B. C. Young, R. J. Rafac, J. A. Beall, F. C. Cruz, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Hg+ optical frequency standard: recent progress," in Laser Spectroscopy, proceedings of the XIV International Conference, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, eds. (World Scientific, Singapore, 1999), pp. 61-70.
  19. J. E. Gray and D. W. Allan, "A method for estimating the frequency stability of an individual oscillator," in Proc. 28th Frequency Control Symposium, (1974), pp. 243-246.
  20. A. Premoli and P. Tavella, "A revisited three-cornered hat method for estimating frequency standard instability," IEEE Trans. Instrum. Meas. 42,7-13 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited