OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10195–10205

Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes

Yu.A. Akimov, W.S. Koh, and K. Ostrikov  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10195-10205 (2009)
http://dx.doi.org/10.1364/OE.17.010195


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

© 2009 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 14, 2009
Revised Manuscript: May 25, 2009
Manuscript Accepted: May 25, 2009
Published: June 3, 2009

Citation
Yu.A. Akimov, W.S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes," Opt. Express 17, 10195-10205 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003).
  2. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (The University of New South Wales, Sydney, 1998).
  3. J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004). [CrossRef]
  4. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008). [CrossRef] [PubMed]
  5. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000). [CrossRef]
  6. A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008). [CrossRef]
  7. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008). [CrossRef]
  8. S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008). [CrossRef]
  9. H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998). [CrossRef]
  10. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  11. D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  13. M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, "Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters," Opt. Express 16, 15754-15758 (2008). [CrossRef] [PubMed]
  14. B. J. Soller and D. G. Hall, "Scattering enhancement from an array of interacting dipoles near a planar waveguide," J. Opt. Soc. Am. B 19, 2437-2448 (2002). [CrossRef]
  15. K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006). [CrossRef]
  16. N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999). [CrossRef]
  17. Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009). [CrossRef]
  18. B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007). [CrossRef]
  19. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). [CrossRef] [PubMed]
  20. W. B. Ewe, H. S. Chu, and E. P. Li, "Volume integral equation analysis of surface plasmon resonance of nanoparticles," Opt. Express 15, 18200-18208 (2007). [CrossRef] [PubMed]
  21. K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008). [CrossRef]
  22. C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1998). [CrossRef]
  24. Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006). [CrossRef]
  25. Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003). [CrossRef]
  26. K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited