OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10242–10258

Compact adaptive optics line scanning ophthalmoscope

Mircea Mujat, R. Daniel Ferguson, Nicusor Iftimia, and Daniel X. Hammer  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10242-10258 (2009)
http://dx.doi.org/10.1364/OE.17.010242


View Full Text Article

Enhanced HTML    Acrobat PDF (15486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning ophthalmoscope (LSO). The bench-top AO-LSO instrument significantly reduces the size, complexity, and cost of research AO scanning laser ophthalmoscopes (AOSLOs), for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AO-LSO produces high resolution retinal images with only one moving part and a significantly reduced instrument footprint and number of optical components. The AO-LSO has a moderate field of view (5.5 deg), which allows montages of the macula or other targets to be obtained more quickly and efficiently. In a preliminary human subjects investigation, photoreceptors could be resolved and counted within ~0.5 mm of the fovea. Photoreceptor counts matched closely to previously reported histology. The capillaries surrounding the foveal avascular zone could be resolved, as well as cells flowing within them. Individual nerve fiber bundles could be resolved, especially near the optic nerve head, as well as other structures such as the lamina cribrosa. In addition to instrument design, fabrication, and testing, software algorithms were developed for automated image registration and cone counting.

© 2009 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.5755) Medical optics and biotechnology : Retina scanning
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 6, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 15, 2009
Published: June 4, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Mircea Mujat, R. Daniel Ferguson, Nicusor Iftimia, and Daniel X. Hammer, "Compact adaptive optics line scanning ophthalmoscope," Opt. Express 17, 10242-10258 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007). [CrossRef]
  2. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007). [CrossRef]
  3. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active Optical Depth Resolution Improvement of the Laser Tomographic Scanner," Appl. Opt. 28, 804-808 (1989). [CrossRef] [PubMed]
  4. E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008),http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11083. [CrossRef] [PubMed]
  5. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P.M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  6. J. Z. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  7. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405. [PubMed]
  8. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8126 [CrossRef] [PubMed]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8532. [CrossRef] [PubMed]
  10. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4380. [CrossRef] [PubMed]
  11. J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005). [CrossRef] [PubMed]
  12. Z. Y. Zhong, B. L. Petrig, X. F. Qi, and S. A. Burns, "In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy," Opt. Express 16, 12746-12756 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12746. [PubMed]
  13. K. Grieve and A. Roorda, "Intrinsic signals from human cone photoreceptors," Invest. Ophthalmol. Vis. Sci. 49, 713-719 (2008). [CrossRef] [PubMed]
  14. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007). [CrossRef] [PubMed]
  15. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness," Proc. Nat. Acad. Sci. USA 101, 8461-8466 (2004). [CrossRef] [PubMed]
  16. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, "Organization of the human trichromatic cone mosaic," J. Neurosci. 25, 9669-9679 (2005). [CrossRef] [PubMed]
  17. A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999). [CrossRef] [PubMed]
  18. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-12 (2002). [CrossRef]
  19. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest. Ophthalmol. Vis. Sci. 47, 4160-4167 (2006). [CrossRef] [PubMed]
  20. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, "The locus of fixation and the foveal cone mosaic," J. Vision 5, 632-639 (2005). [CrossRef]
  21. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14, 7144-7158 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7144. [CrossRef] [PubMed]
  22. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, "In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic," Investigative Opthalmol. Vis. Sci.  50, 1350-1359 (2009).
  23. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, "In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells," Invest. Ophthalmol. Vis. Sci. 49, 467-473 (2008). [CrossRef] [PubMed]
  24. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, "Adaptive Optics Scanning Laser Ophthalmoscopy Images Demonstrate Abnormal Cone Structure in a Family with the Mitochondrial DNA T8993C Mutation," Invest. Ophthalmol. Vis. Sci.  50, 1838-1847 (2008). [CrossRef]
  25. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, "In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function," Invest. Ophthalmol. Vis. Sci. 47, 2080-2092 (2006). [CrossRef] [PubMed]
  26. A. Roorda, Y. H. Zhang, and J. L. Duncan, "High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease," Invest. Ophthalmol. Vis. Sci. 48, 2297-2303 (2007). [CrossRef] [PubMed]
  27. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006). [CrossRef]
  28. S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, "Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies," Invest. Ophthalmol. Vis. Sci. 49, 2103-2119 (2008). [CrossRef] [PubMed]
  29. J. L. Duncan, Y. H. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, "High-resolution imaging with adaptive optics in patients with inherited retinal degeneration," Invest. Ophthalmol. Vis. Sci. 48, 3283-3291 (2007). [CrossRef] [PubMed]
  30. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, "Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study," Invest. Ophthalmol. Vis. Sci. 49, 2061-2070 (2008). [CrossRef] [PubMed]
  31. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  32. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002). [CrossRef]
  33. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900. [CrossRef] [PubMed]
  34. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023 (2002). [CrossRef] [PubMed]
  35. F. Vargas-Martin, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  36. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. 11, 041126 (2006). [CrossRef] [PubMed]
  37. A. N. S. I. (ANSI), American National Standard for the Safe Use of Lasers. 2000, American National Standard Institute, Inc.
  38. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum Permissible Exposures for Ocular Safety (ANSI 2000), with Emphasis on Ophthalmic Devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007). [CrossRef]
  39. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354. [CrossRef] [PubMed]
  40. D. X. Hammer, M. Mujat, N. V. Iftimia, and D. Ferguson, Compact adaptive optics line scanning laser ophthalmoscope, Proc. SPIE Vol. 7163, 71630J, 2009.
  41. C. A. Curcio and K. R. Sloan, "Packing Geometry of Human Cone Photoreceptors - Variation with Eccentricity and Evidence for Local Anisotropy," Vis. Neurosci. 9, 169-180 (1992). [CrossRef] [PubMed]
  42. T. Y. P. Chui, H. X. Song, and S. A. Burns, "Adaptive-optics imaging of human cone photoreceptor distribution," J. Opt. Soc. Am. A 25, 3021-3029 (2008). [CrossRef]
  43. K. Y. Li and A. Roorda, "Automated identification of cone photoreceptors in adaptive optics retinal images," J. Opt. Soc. Am. A 24, 1358-1363 (2007). [CrossRef]
  44. B. Xue, S. S. Choi, N. Doble, and J. S. Werner, "Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera," J. Opt. Soc. Am. A 24, 1364-1372 (2007). [CrossRef]
  45. T. Y. P. Chui, H. Song, and S. A. Burns, "Individual variations in human cone photoreceptor packing density: Variations with refractive error," Invest. Ophthalmol. Vis. Sci. 49, 4679-4687 (2008). [CrossRef] [PubMed]
  46. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, "Retinally stabilized cone-targeted stimulus delivery," Opt. Express 15, 13731-13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731. [CrossRef] [PubMed]
  47. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-487. [CrossRef] [PubMed]
  48. S. B. Stevenson and A. Roorda, Correcting for miniature eye movements in high resolution scanning Laser Ophthalmoscopy, Proc. SPIE Vol. 5688A, 145-151, 2005.
  49. D. Lowe, "Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image," US Patent number: 6,711,293 (2004).
  50. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, "Real-time extended depth of field microscopy," Opt. Express 16, 21843-21848 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21843. [CrossRef] [PubMed]
  51. D. Debarre, E. J. Botcherby, M. J. Booth, and T. Wilson, "Adaptive optics for structured illumination microscopy," Opt. Express 16, 9290-9305 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9290. [CrossRef] [PubMed]
  52. D. Debarre, M. J. Booth, and T. Wilson, "Image based adaptive optics through optimisation of low spatial frequencies," Opt. Express 15, 8176-8190 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8176. [CrossRef] [PubMed]
  53. M. Booth, T. Wilson, H. B. Sun, T. Ota, and S. Kawata, "Methods for the characterization of deformable membrane mirrors," Appl. Opt. 44, 5131-5139 (2005). [CrossRef] [PubMed]
  54. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, "Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy," Microsc. Res. Tech. 67, 36-44 (2005). [CrossRef] [PubMed]
  55. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror," J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (7710 KB)     
» Media 2: MOV (13602 KB)     
» Media 3: MOV (5220 KB)     
» Media 4: MOV (3000 KB)     
» Media 5: MOV (11208 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited