OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10472–10488

Extreme axial optical force in a standing wave achieved by optimized object shape

J. Trojek, V. Karásek, and P. Zemanek  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10472-10488 (2009)
http://dx.doi.org/10.1364/OE.17.010472


View Full Text Article

Acrobat PDF (2046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Standing wave optical trapping offers many useful advantages in comparison to single beam trapping, especially for submicrometer size particles. It provides axial force stronger by several orders of magnitude, much higher axial trap stiffness, and spatial confinement of particles with higher refractive index. Mainly spherical particles are nowadays considered theoretically and trapped experimentally. In this paper we consider prolate objects of cylindrical symmetry with radius periodically modulated along the axial direction and we present a theoretical study of optimized objects shapes resulting in up to tenfold enhancement of the axial optical force in comparison with the original unmodulated object shape. We obtain analytical formulas for the axial optical force acting on low refractive index objects where the light scattering by the object is negligible. Numerical results based on the coupled dipole method are presented for objects with higher refractive indices and they support the previous simplified analytical conclusions.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 3, 2009
Revised Manuscript: May 2, 2009
Manuscript Accepted: May 14, 2009
Published: June 8, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
J. Trojek, V. Karásek, and P. Zemanek, "Extreme axial optical force in a standing wave achieved by optimized object shape," Opt. Express 17, 10472-10488 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10472


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008). [CrossRef]
  3. A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008). [CrossRef]
  4. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  5. K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996). [CrossRef]
  6. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003). [CrossRef]
  7. A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Opt. Express 14, 13101-13106 (2006). [CrossRef]
  8. Y.-L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef]
  9. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005). [CrossRef]
  10. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007). [CrossRef]
  11. F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007). [CrossRef]
  12. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  13. P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007). [CrossRef]
  14. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A 18, 1944-1953 (2001). [CrossRef]
  15. D. A. White, "Vector finite element modeling of optical tweezers," Comp. Phys. Commun. 128, 558-564 (2000). [CrossRef]
  16. R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005). [CrossRef]
  17. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielctric media," Opt. Express 13, 2321-2336 (2005). [CrossRef]
  18. W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003). [CrossRef]
  19. D. C. Benito, S. H. Simpson, and S. Hanna, "FDTD simulations of forces on particles during holographic assembly," Opt. Express 16, 2942-2957 (2008). [CrossRef]
  20. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef]
  21. A. Constable and J. Kim, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867- 1869 (1993). [CrossRef]
  22. S. D. Collins, R. J. Baskin, and D. G. Howitt, "Microinstrument gradient-force optical trap," Appl. Opt. 38, 6068-6074 (1999). [CrossRef]
  23. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000). [CrossRef]
  24. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005). [CrossRef]
  25. S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006). [CrossRef]
  26. P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006). [CrossRef]
  27. D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004). [CrossRef]
  28. P. Rodrigo, L. Gammelgaard, P. Boggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005). [CrossRef]
  29. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  30. V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008). [CrossRef]
  31. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998). [CrossRef]
  32. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999). [CrossRef]
  33. P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002). [CrossRef]
  34. P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003). [CrossRef]
  35. T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006). [CrossRef]
  36. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  37. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006). [CrossRef]
  38. D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008). [CrossRef]
  39. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006). [CrossRef]
  40. M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006). [CrossRef]
  41. M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008). [CrossRef]
  42. J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006). [CrossRef]
  43. L. Kelemen, S. Valkai, and P. Ormos, "Integrated Optical Rotor," Appl. Opt. 45, 2777-2779 (2006). [CrossRef]
  44. L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15(22), 14488-14497 (2007). [CrossRef]
  45. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef]
  46. A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006). [CrossRef]
  47. A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005). [CrossRef]
  48. T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998). [CrossRef]
  49. V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009). [CrossRef]
  50. V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006). [CrossRef]
  51. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (635 KB)     
» Media 2: MOV (644 KB)     
» Media 3: MOV (730 KB)     
» Media 4: MOV (280 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited