OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10522–10528

Numerical analysis of resonant properties of a waveguide structure within a random medium

Hideki Fujiwara, Yosuke Hamabata, and Keiji Sasaki  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10522-10528 (2009)
http://dx.doi.org/10.1364/OE.17.010522


View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple structure for manipulating resonant conditions in random structures, which is composed of a waveguide structure as a defect region embedded in a random structure. Using the two-dimensional finite-difference time-domain method, we examine the resonant properties of localized modes bound in the waveguide. From the results, we confirm that long-lived modes are strongly confined in the waveguide only when the resonant frequency matches the frequency windows in the transmitted intensity spectrum of the surrounding random structure.

© 2009 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(290.4210) Scattering : Multiple scattering
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 21, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 4, 2009
Published: June 8, 2009

Citation
Hideki Fujiwara, Yosuke Hamabata, and Keiji Sasaki, "Numerical analysis of resonant properties of a waveguide structure within a random medium," Opt. Express 17, 10522-10528 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10(12), 2358–2363 (1993). [CrossRef]
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  3. M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, “Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals,” J. Opt. Soc. Am. B 13(9), 2024–2033 (1996). [CrossRef]
  4. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  5. A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999). [CrossRef]
  6. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002). [CrossRef] [PubMed]
  8. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004). [CrossRef]
  9. G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002). [CrossRef]
  10. H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004). [CrossRef]
  11. H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006). [CrossRef]
  12. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24(5), 306–308 (1999). [CrossRef]
  13. G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002). [CrossRef] [PubMed]
  14. H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000). [CrossRef]
  15. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000). [CrossRef] [PubMed]
  16. Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005). [CrossRef]
  17. H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005). [CrossRef]
  18. C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005). [CrossRef]
  19. S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007). [CrossRef]
  20. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001). [CrossRef] [PubMed]
  21. S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008). [CrossRef]
  22. C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005). [CrossRef] [PubMed]
  23. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002). [CrossRef]
  24. J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006). [CrossRef]
  25. H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express 17(5), 3970–3977 (2009). [CrossRef] [PubMed]
  26. H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003). [CrossRef]
  27. C. Rockstuhl, U. Peschel, and F. Lederer, “Correlation between single-cylinder properties and bandgap formation in photonic structures,” Opt. Lett. 31(11), 1741–1743 (2006). [CrossRef] [PubMed]
  28. J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007). [CrossRef]
  29. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef]
  30. M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited