OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10599–10605

Aerogel waveplates

Pradeep Bhupathi, Jungseek Hwang, Rodica M. Martin, Jackson Blankstein, Lukas Jaworski, Norbert Mulders, David B. Tanner, and Yoonseok Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10599-10605 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical transmission measurements were made on 98% porosity silica aerogel samples under various degrees of uniaxial strain. Uniaxially compressed aerogels exhibit large birefringence, proportional to the amount of compression, up to the 15% strain studied. The birefringence is mostly reversible and reproducible through multiple compression-decompression cycles. Our study demonstrates that uniaxially strained high porosity aerogels can be used as tunable waveplates in a broad spectral range.

© 2009 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.1440) Physical optics : Birefringence

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 5, 2009
Revised Manuscript: June 4, 2009
Manuscript Accepted: June 4, 2009
Published: June 9, 2009

Pradeep Bhupathi, Jungseek Hwang, Rodica M. Martin, Jackson Blankstein, Lukas Jaworski, Norbert Mulders, David B. Tanner, and Yoonseok Lee, "Aerogel waveplates," Opt. Express 17, 10599-10605 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature 127(3211), 741 (1931). [CrossRef]
  2. J. Fricke, Sci. Am. 258, 92 (1988). [CrossRef]
  3. J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992). [CrossRef]
  4. D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988). [CrossRef]
  5. C. Weust, and T. Tillotson, “Aerogel-supported filament,” US Patent 5416376, (1992).
  6. C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001). [CrossRef]
  7. M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002). [CrossRef]
  8. M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974). [CrossRef]
  9. M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996). [CrossRef]
  10. W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).
  11. C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005). [CrossRef]
  12. J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008). [CrossRef]
  13. J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988). [CrossRef]
  14. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984). [CrossRef] [PubMed]
  15. M. Born, and E. Wolf, Principles of Optics (Pergamon press, United Kingdom 1970), Chap 2, 14.
  16. T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992). [CrossRef]
  17. P. Bhupathi, J. Hwang, R. M. Martin, L. Jaworskii, N. Mulders, D. B. Tanner, Y. Lee, in preparation.
  18. A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998). [CrossRef]
  19. P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992). [CrossRef]
  20. W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).
  21. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975). [CrossRef]
  22. G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, K. Button, ed. (Academic Press, Orlando, Fla., 1985).
  23. J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67(11-12), 351–357 (1945). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited