OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10659–10674

Multiscale lens design

David J. Brady and Nathan Hagen  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10659-10674 (2009)
http://dx.doi.org/10.1364/OE.17.010659


View Full Text Article

Enhanced HTML    Acrobat PDF (859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While lenses of aperture less than 1000λ frequently form images with pixel counts approaching the space-bandwidth limit, only heroic designs approach the theoretical information capacity at larger scales. We propose to use the field processing capabilities of small-scale secondary lens arrays to correct aberrations due to larger scale objective lenses, with an ultimate goal of achieving diffraction-limited imaging for apertures greater than 10,000λ. We present an example optical design using an 8 mm entrance pupil capable of resolving 20 megapixels.

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design
(110.1758) Imaging systems : Computational imaging

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 20, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 5, 2009
Published: June 10, 2009

Citation
David J. Brady and Nathan Hagen, "Multiscale lens design," Opt. Express 17, 10659-10674 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. di Francia, "Degrees of freedom of an image," J. Opt. Soc. Am. 59, 799-804 (1969). [CrossRef]
  2. J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen, "Capturing and viewing gigapixel images," ACM Trans. Graphics 26, 93 (2007). [CrossRef]
  3. A. W. Lohmann, "Scaling laws for lens systems," Appl. Opt. 28, 4996-4998 (1989). [CrossRef] [PubMed]
  4. T. Matsuyama, Y. Ohmura, and D. M. Williamson, "The lithographic lens: its history and evolution," in Optical Microlithography XIX, D. G. Flagello, ed., vol. 6154 of Proc. SPIE (2006).
  5. R. Völkel, M. Eisner, and K. J. Weible, "Miniaturized imaging systems," Microelectron. Eng. 67-68, 461-472 (2003).
  6. Y. Dagan, "Wafer-level optics enables low cost camera phones," in Integrated Optics: Devices, Materials, and Technologies XIII, J.-E. Broquin and C. M. Greiner, eds., vol. 7218 of Proc. SPIE (2009).
  7. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, "Thin observation module by bound optics (TOMBO): concept and experimental verification," Appl. Opt. 40, 1806-1813 (2001). [CrossRef]
  8. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. T. Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, "Thin infrared imaging systems through multichannel sampling," Appl. Opt. 47, B1-B10 (2008). [CrossRef] [PubMed]
  9. T. Mirani, D. Rajan, M. P. Christensen, S. C. Douglas, and S. L. Wood, "Computational imaging systems: joint design and end-to-end optimality," Appl. Opt. 47, B86-B103 (2008). [CrossRef] [PubMed]
  10. K. Choi and T. J. Schulz, "Signal-processing approaches for image-resolution restoration for TOMBO imagery," Appl. Opt. 47, B104-B116 (2008). [CrossRef] [PubMed]
  11. A. V. Kanaev, D. A. Scribner, J. R. Ackerman, and E. F. Fleet, "Analysis and application of multiframe superresolution processing for conventional imaging systems and lenslet arrays," Appl. Opt. 46, 4320-4328 (2007). [CrossRef] [PubMed]
  12. A. D. Portnoy, N. P. Pitsianis, X. Sun, and D. J. Brady, "Multichannel sampling schemes for optical imaging systems," Appl. Opt. 47, B76-B85 (2008). [CrossRef] [PubMed]
  13. R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, "Three-dimensional information acquisition using a compound imaging system," Opt. Rev. 14, 347-350 (2007). [CrossRef]
  14. E. H. Adelson and J. Y. Wang, "Single lens stereo with a plenoptic camera," IEEE Trans. Pattern Anal. Mach. Intel. 14, 99-106 (1992). [CrossRef]
  15. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, "Light field microscopy," ACM Trans. Graphics 25, 924-934 (2006). [CrossRef]
  16. H.-J. Lee, D.-H. Shin, H. Yoo, J.-J. Lee, and E.-S. Kim, "Computational integral imaging reconstruction scheme of far 3D objects by additional use of an imaging lens," Opt. Comm. 281, 2026-2032 (2007). [CrossRef]
  17. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, "Microoptical telescope compound eye," Opt. Express 13, 889-903 (2005). [CrossRef] [PubMed]
  18. J. A. Cox and B. S. Fritz, "Variable focal length micro lens array field curvature corrector," (2003). US Patent 6556349.
  19. R. Bacon, P. Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, "The SAURON project—I. The panoramic integral-field spectrograph," Monthly Notices of the Royal Astronomical Society 326, 23-35 (2001). [CrossRef]
  20. http://www.gmto.org/codrfolder/GMT-ID-01467-Chapter 6 Optics.pdf/.
  21. http://www2.keck.hawaii.edu/inst/hires/.
  22. http://www.zemax.com.
  23. M. V. R. K. Murty, "On the theoretical limit of resolution," J. Opt. Soc. Am. 47, 667-668 (1957). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited