OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10688–10696

Manipulating spatial qudit states with programmable optical devices

G. Lima, A. Vargas, L. Neves, R. Guzmán, and C. Saavedra  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10688-10696 (2009)
http://dx.doi.org/10.1364/OE.17.010688


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The study of how to generate high-dimensional quantum states (qudits) is justified by the advantages that they can bring for the field of quantum information. However, to have some real practical potential for quantum communication, these states must be also of simple manipulation. Spatial qudits states, which are generated by engineering the transverse momentum of the parametric down-converted photons, have been until now considered of hard manipulation. Nevertheless, we show in this work a simple technique for modifying these states. This technique is based on the use of programmable diffractive optical devices, that can act as spatial light modulators, to define the Hilbert space of these photons instead of pre-fabricated multi-slits.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: February 11, 2009
Revised Manuscript: May 18, 2009
Manuscript Accepted: June 8, 2009
Published: June 11, 2009

Citation
G. Lima, A. Vargas, L. Neves, R. Guzmán, and C. Saavedra, "Manipulating spatial qudit states with programmable optical devices," Opt. Express 17, 10688-10696 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10688


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 21-27 (2003). [CrossRef]
  2. J. Plewa, E. Tanner, D. Mueth and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004). [CrossRef] [PubMed]
  3. A. Gogo,W. D. Snyder and M. Beck, "Comparing quantum and classical correlations in a quantum eraser," Phys. Rev. A 71, 052103 (2005). [CrossRef]
  4. M. T. Gruneisen, W. A. Miller, R. C. Dymale and A. M. Sweiti, "Holographic generation of complex fields with spatial light modulators: Application to quantum key distribution," Appl. Opt. 47, A32-A42 (2008). [CrossRef] [PubMed]
  5. A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  6. E. Yao, S. Franke-Arnold, J. Courtial and M. J. Padgett, "Observation of quantum entanglement using spatial light modulators," Opt. Express 14, 13089-13094 (2006). [CrossRef] [PubMed]
  7. M. Stutz, S. Groblacher, T. Jennewein and A. Zeilinger, "How to create and detect N-dimensional entangled photons with an active phase hologram," Appl. Phys. Lett. 90, 261114 (2007). [CrossRef]
  8. A. K. Jha, B. Jack, E. Yao, J. Leach, R.W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold and M. J. Padgett, "Fourier relationship between the angle and angular momentum of entangled photons," Phys. Rev. A 78, 043810 (2008). [CrossRef]
  9. H. Bechmann-Pasquinucci and A. Peres, "Quantum Cryptography with 3-State Systems," Phys. Rev. A 85, 3313-3316 (2000).
  10. T. Durt, D. Kaszlikowski, J. L. Chen, and L. C. Kwek, "Security of quantum key distributions with entangled qudits," Phys. Rev. A 69, 032313 (2004). [CrossRef]
  11. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski and A. Zeilinger, "Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger than for Two Qubit," Phys. Rev. Lett. 85, 4418-4421 (2000). [CrossRef] [PubMed]
  12. J. S. Bell, "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys. 38, 447-452 (1966). [CrossRef]
  13. A. Aspect, "Bells inequality test: more ideal than ever," Nature 398, 189-190 (1999). [CrossRef]
  14. Yu. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh and M. K. Tey, "Qutrit State Engineering with Biphotons," Phys. Rev. Lett. 93, 230503 (2004). [CrossRef] [PubMed]
  15. G. Vallone, E. Pomarico, F. De Martini and P. Mataloni, "Experimental realization of polarization qutrits from nonmaximally entangled states," Phys. Rev. A 76, 012319 (2007). [CrossRef]
  16. B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. OBrien, K. J. Resch, A. Gilchrist and A. G. White, "Manipulating Biphotonic Qutrits," Phys. Rev. Lett. 100, 060504 (2008). [CrossRef] [PubMed]
  17. S.-Y. Baek, S. S. Straupe, A. P. Shurupov, S. P. Kulik and Y.-H. Kim, "Preparation and characterization of arbitrary states of four-dimensional qudits based on biphotons," Phys. Rev. A 78, 042321 (2008). [CrossRef]
  18. R. T. Thew, A. Acın, H. Zbinden and N. Gisin, "Bell-Type Test of Energy-Time Entangled Qutrits," Phys. Rev. Lett. 93, 010503 (2004). [CrossRef]
  19. A. Rossi, G. Vallone, A. Chiuri, F. De Martini and P. Mataloni, "Multipath Entanglement of Two Photons," Phys. Rev. Lett. 102, 153902 (2009). [CrossRef] [PubMed]
  20. L. Neves, G. Lima, J. G. A. Gomez, C. H. Monken, C. Saavedra and S. Padua, "Generation of Entangled States of Qudits using Twin Photons," Phys. Rev. Lett. 94, 100501 (2005). [CrossRef] [PubMed]
  21. I. Moreno, P. Velaquez, C. R. Fernandez-Pousa and M. M. Sanchez-Lopez, "Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display," J. Appl. Phys. 94, 3697-3702 (2003). [CrossRef]
  22. C. H. Monken, P. H. S. Ribeiro and S. Padua, "Transfer of angular spectrum and image formation in spontaneous parametric down-conversion," Phys. Rev. A 57, 3123-3126 (1998). [CrossRef]
  23. L. Neves, G. Lima, E. J. S. Fonseca, L. Davidovich and S. Padua, "Characterizing entanglement in qubits created with spatially correlated twin photons," Phys. Rev. A 76, 032314 (2007). [CrossRef]
  24. G. Lima, F.A. Torres-Ruiz, L. Neves, A. Delgado, C. Saavedra, S. Padua, "Generating mixtures of spatial qubits," Opt. Commun. 281, 5058-5906 (2008). [CrossRef]
  25. X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu and N. B. Ming, "Transforming Spatial Entanglement Using a Domain-Engineering Technique," Phys. Rev. Lett. 101, 233601 (2008). [CrossRef] [PubMed]
  26. W. H. Peeters, J. J. Renema and M. P. van Exter, "Engineering of two-photon spatial quantum correlations behind a double slit," Phys. Rev. A 79043817 (2009). [CrossRef]
  27. P. H. S. Ribeiro, C. H. Monken and G. A. Barbosa, "Measurement of coherence area in parametric downconversion luminescence," Appl. Opt. 33, 352-355 (1994). [CrossRef] [PubMed]
  28. J. A. Davis., I. Moreno, and P. Tsai. "Polarization eigenstates for twisted-nematic liquid-crystal displays," Appl. Opt. 37, 937-945 (1998). [CrossRef]
  29. P. Mogensen and J. Gckstad, "Phase-only optical encryption," Opt. Lett. 25, 566-568 (2000). [CrossRef]
  30. J. A. Coy, M. Zaldarriaga, D. F. Grosz, and O. E. Martinez, "Characterization of a liquid crystal television as a programmable spatial light modulator," Opt. Eng. 35, 15-19 (1996). [CrossRef]
  31. J. Nicolas, J. Campos, and M. J. Yzuel, "Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices," J. Opt. Soc. Am. A 19, 1013-1020 (2002). [CrossRef]
  32. A. Marquez, C. Iemmi, and I. Moreno "Quantitative predictions of the modulation behavior of twister nematic liquid crystal displays based on a simple physical model," Opt. Eng. 40, 2558-2564 (2001). [CrossRef]
  33. C. R. Fernandez-Pousa, I. Moreno, N. Bennis and C. Gomez-Reino, "Generalized formulation and symmetry properties of reciprocal nonabsorbing polarization devices: application to liquid-crystal displays," J. Opt. Soc. Am. A 17, 2074-2080 (2000). [CrossRef]
  34. G. Lima, L. Neves, I. F. Santos, J. G. Aguirre Gomez, C. Saavedra and S. Padua, "Propagation of spatially entangled qudits through free space," Phys. Rev. A 73, 032340 (2006). [CrossRef]
  35. G. Lima F. A. Torres-Ruiz, L. Neves, A Delgado, C Saavedra and S. Padua, "Measurement of spatial qubits," J. Phys. B 41, 185501 (2008). [CrossRef]
  36. G. Taguchi, T. Dougakiuchi, N. Yoshimoto, K. Kasai, M. Iinuma, H. F. Hofmann and Y. Kadoya, "Measurement and control of spatial qubits generated by passing photons through double slits," Phys. Rev. A 78, 012307 (2008). [CrossRef]
  37. A. B. Klimov, C. Muoz, A. Fernandez and C. Saavedra, "Optimal quantum-state reconstruction for cold trapped ions," Phys. Rev. A 77, 060303(R) (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited