OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10757–10766

Absorption switches in metal-dielectric-metal plasmonic waveguides

Changjun Min and Georgios Veronis  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10757-10766 (2009)
http://dx.doi.org/10.1364/OE.17.010757


View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the properties of absorption switches for metal-dielectric-metal (MDM) plasmonic waveguides. We show that a MDM waveguide directly coupled to a cavity filled with an active material with tunable absorption coefficient can act as an absorption switch, in which the on/off states correspond to the absence/presence of optical pumping. We also show that a MDM plasmonic waveguide side-coupled to a cavity filled with an active material can operate as an absorption switch, in which the on/off states correspond to the presence/absence of pumping. For a specific modulation depth, the side-coupled-cavity switch results in more compact designs compared to the direct-coupled-cavity switch. Variations in the imaginary part of the refractive index of the material filling the cavity of Δκ = 0.01 (Δκ = 0.15) result in ~60% (~99%) modulation depth. The properties of both switches can be accurately described using transmission line theory.

© 2009 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 13, 2009
Revised Manuscript: June 7, 2009
Manuscript Accepted: June 8, 2009
Published: June 11, 2009

Citation
Changjun Min and Georgios Veronis, "Absorption switches in metal-dielectric-metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  4. S. A. Maier, Plasmonics: fundamentals and applications, (Springer, New York, 2007).
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–63 (2007). [CrossRef] [PubMed]
  6. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004). [CrossRef]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  8. A. L. Lereu, A. Passian, J.-P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett. 86(15), 154101 (2005). [CrossRef]
  9. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  10. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2(3), 125–135 (2008). [CrossRef]
  11. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008). [CrossRef] [PubMed]
  12. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8(11), 4058–4052 (2008). [CrossRef]
  13. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008). [CrossRef]
  14. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008). [CrossRef]
  15. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008). [CrossRef] [PubMed]
  16. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  17. D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).
  18. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002). [CrossRef]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  21. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  22. G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  23. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  24. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008). [CrossRef] [PubMed]
  25. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  26. D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).
  27. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  28. G. Veronis, and S. Fan, “Overview of Simulation Techniques for Plasmonic Devices,” in Surface Plasmon Nanophotonics, Mark L. Brongersma and Pieter G. Kik, ed. (Springer, 2007).
  29. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).
  30. J. Jin, The Finite Element Method in Electromagnetics, (Wiley, New York, 2002).
  31. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, (Wiley, New York, 1994).
  32. H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” IEEE J. Lightwave Technol. 9(6), 754–760 (1991). [CrossRef]
  33. H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992). [CrossRef]
  34. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008). [CrossRef]
  35. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008). [CrossRef] [PubMed]
  36. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). [CrossRef]
  37. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  38. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007). [CrossRef] [PubMed]
  39. I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010 (1987). [CrossRef]
  40. S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited