OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10910–10925

Interaction of radially polarized focused light with a prolate spheroidal nanoparticle

Kürşat Şendur and Ahmet Şahinöz  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10910-10925 (2009)
http://dx.doi.org/10.1364/OE.17.010910


View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction of a nanoparticle with light is affected by nanoparticle geometry and composition, as well as by focused beam parameters, such as the polarization and numerical aperture of the beam. The interaction of a radially focused beam with a prolate spheroidal nanoparticle is particularly important because it has the potential to produce strong near-field electromagnetic radiation. Strong and tightly localized longitudinal components of a radially polarized focused beam can excite strong plasmon modes on elongated nanoparticles such as prolate spheroids. In this study, near field radiation from a prolate spheriodal nanoparticle is investigated when it is illuminated with a radially polarized focused beam of light. Near-field radiation from the nanoparticle is investigated in the absence and presence of metallic layers. It is shown that the interaction of a radially polarized focused beam with a prolate spheroidal nanoparticle can be enhanced by creating images of monopole charges using metallic layers. In addition, it is also observed that the presence of a metallic layer shifts the resonance of the prolate spheroid toward longer wavelengths. Dipole, quadruple, and off resonance field distributions for particles with different sizes and aspect ratios are presented when they are illuminated with a radially focused beam of light.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 27, 2009
Revised Manuscript: May 20, 2009
Manuscript Accepted: May 21, 2009
Published: June 16, 2009

Citation
Kürsat Sendur and Ahmet Sahinöz, "Interaction of radially polarized focused light with a prolate spheroidal nanoparticle," Opt. Express 17, 10910-10925 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  2. O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002). [CrossRef]
  3. W. A. Challener, I. K. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in a dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  4. K. Sendur, W. Challener, and O. Mryasov, "Interaction of spherical nanoparticles with a highly focused beam of light," Opt. Express 16, 2874-2886 (2008). [CrossRef] [PubMed]
  5. J. Lerme, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, "Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique," J. Opt. Soc. Am. A 25, 493-514 (2008). [CrossRef]
  6. N. M. Mojarad, V. Sandoghdar, and M. Agio, "Plasmon spectra of nanospheres under a tightly focused beam," J. Opt. Soc. Am. B 25, 651-658 (2008). [CrossRef]
  7. D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, A. J. Meixner, "Tight focusing of laser beams in a l /2-microcavity," Opt. Express 16, 9907-9917 (2008). [CrossRef] [PubMed]
  8. A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006). [CrossRef] [PubMed]
  9. N. M. Mojarad and M. Agio, "Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams," Opt. Express 17, 117-122 (2009). [CrossRef] [PubMed]
  10. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002). [CrossRef]
  11. B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002). [CrossRef]
  12. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  13. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  14. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  15. L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, New York, NY, 2006) Chap. 3.
  16. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997). [CrossRef] [PubMed]
  17. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  18. M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre, "Doughnut mode magneto-optical trap," J. Opt. Soc. Am. B 14, 544-552 (1997). [CrossRef]
  19. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  20. H. Kano, D. Nomura, and H. Shibuya, "Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam," Appl. Opt. 43, 2409-2411 (2004). [CrossRef] [PubMed]
  21. H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998). [CrossRef]
  22. J. M. Jin, The finite element method in electromagnetics (John Wiley & Sons, New York, NY, 2000).
  23. All the FEM calculations in this report are performed with High Frequency Structure Simulator from Ansoft Inc with the inhouse developed focused beam models integrated into it.
  24. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).
  25. A. Hartschuh, E. J. S’anchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  26. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004). [CrossRef]
  27. L. Wang and X. Xu, "Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures," J. Microsc. 229, 483-489 (2008). [CrossRef] [PubMed]
  28. B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983). [CrossRef]
  29. J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).
  30. P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004). [CrossRef]
  31. F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited