OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 11107–11112

Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides

Martin T. Hill, Milan Marell, Eunice S. P. Leong, Barry Smalbrugge, Youcai Zhu, Minghua Sun, Peter J. van Veldhoven, Erik Jan Geluk, Fouad Karouta, Yok-Siang Oei, Richard Nötzel, Cun-Zheng Ning, and Meint K. Smit  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 11107-11112 (2009)
http://dx.doi.org/10.1364/OE.17.011107


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate lasing in Metal-Insulator-Metal (MIM) waveguides filled with electrically pumped semiconductor cores, with core width dimensions below the diffraction limit. Furthermore these waveguides propagate a transverse magnetic (TM0) or so called gap plasmon mode [1-4]. Hence we show that losses in sub-wavelength MIM waveguides can be overcome to create small plasmon mode lasers at wavelengths near 1500nm. We also give results showing room temperature lasing in MIM waveguides, with approximately 310nm wide semiconductor cores which propagate a transverse electric mode.

© 2009 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: April 14, 2009
Revised Manuscript: June 8, 2009
Manuscript Accepted: June 9, 2009
Published: June 18, 2009

Citation
Martin T. Hill, Milan Marell, Eunice S. P. Leong, Barry Smalbrugge, Youcai Zhu, Minghua Sun, Peter J. van Veldhoven, Erik Jan Geluk, Fouad Karouta, Yok-Siang Oei, Richard Nötzel, Cun-Zheng Ning, and Meint K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-11107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  2. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  3. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86(21), 211101 (2005). [CrossRef]
  4. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (2007). [CrossRef]
  6. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  7. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef] [PubMed]
  8. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008). [CrossRef] [PubMed]
  9. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef] [PubMed]
  10. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]
  11. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006). [CrossRef]
  12. A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
  13. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  14. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993). [CrossRef]
  15. A. V. Maslov, and C. Z. Ning, Nitride Semiconductor Devices, Principles and Simulation. Joachim Piprek (Ed.) (WILEY-VCH Verlag GmbH, Weinheim 2007).
  16. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990). [CrossRef]
  17. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  18. L. D. Landau, and E. M. Lifshitz, Electrodynamics of continuous media, (Pergamon Press, Oxford, 1960).
  19. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22(9), 1915–1921 (1986). [CrossRef]
  20. A. Yariv, Quantum electronics, (John Wiley & Sons, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited