OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11236–11245

Threshold of a random laser based on Raman gain in cold atoms

William Guerin, Nicolas Mercadier, Davide Brivio, and Robin Kaiser  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11236-11245 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the problem of achieving a random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. In this system, the elastic scattering cross-section is related to the complex atomic polarizability. As a consequence, the random laser threshold is expressed as a function of this polarizability, which can be fully determined by spectroscopic measurements. We apply this idea to experimentally evaluate the threshold of a random laser based on Raman gain between non-degenerate Zeeman states and find a critical optical thickness on the order of 200, which is within reach of state-of-the-art cold-atom experiments.

© 2009 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3550) Lasers and laser optics : Lasers, Raman
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 26, 2009
Revised Manuscript: May 21, 2009
Manuscript Accepted: May 22, 2009
Published: June 22, 2009

William Guerin, Nicolas Mercadier, Davide Brivio, and Robin Kaiser, "Threshold of a random laser based on Raman gain in cold atoms," Opt. Express 17, 11236-11245 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).
  2. C. Gouedard, D. Husson, D. Sauteret, F. Auzel, and A. Migus, "Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders," J. Opt. Soc. Am. B 10, 2358-2362 (1993). [CrossRef]
  3. J. Martorell, R. M. Balachandran, and N. M. Lawandy, "Radiative coupling between photonic paint layers," Opt. Lett. 21, 239-241 (1996). [CrossRef] [PubMed]
  4. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, "Ultraviolet Lasing in Resonators Formed by Scattering in Semiconductor Polycrystalline Films," Appl. Phys. Lett. 73, 3656-3658 (1998). [CrossRef]
  5. D. S. Wiersma and S. Cavalier, "Light emission: A temperature-tunable random laser," Nature 414, 708-709 (2001). [CrossRef] [PubMed]
  6. G. Strangi, S. Ferjani, V. Barna, A. D. Luca, C. Versace, N. Scaramuzza, and R. Bartolino, "Random lasing and weak localization of light in dye-doped nematic liquid crystals," Opt. Express 14, 7737-7744 (2006). [CrossRef] [PubMed]
  7. D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996). [CrossRef]
  8. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a Random Laser," Phys. Rev. Lett. 87, 215503 (2001). [CrossRef] [PubMed]
  9. C. Vanneste, P. Sebbah, and H. Cao, "Lasing with Resonant Feedback in Weakly Scattering Random Systems," Phys. Rev. Lett. 98, 143902 (2007). [CrossRef] [PubMed]
  10. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, "Strong Interactions in Multimode Random Lasers," Science 320, 643-646 (2008). [CrossRef] [PubMed]
  11. D. S. Wiersma, "The physics and applications of random lasers," Nat. Phys. 4, 359-367 (2008). [CrossRef]
  12. C. Conti and A. Fratalocchi, "Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals," Nat. Phys. 4, 794-798 (2008). [CrossRef]
  13. H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003). [CrossRef]
  14. H. Cao, "Review on latest developments in random lasers with coherent feedback," J. Phys. A 38, 10497-10535 (2005). [CrossRef]
  15. H. Metcalf and P. van der Straten, Laser cooling and Trapping (Springer, New York, 1999). [CrossRef]
  16. A. Fioretti, A. F. Molisch, J. H. Mutter, P. Verkerk, and M. Allegrini, "Observation of radiation trapping in a dense Cs magneto-optical trap," Opt. Commun. 149, 415-422 (1998). [CrossRef]
  17. G. Labeyrie, E. Vaujour, C. A. Müller, D. Delande, C. Miniatura, D. Wilkowski, and R. Kaiser, "Slow Diffusion of Light in a Cold Atomic Cloud," Phys. Rev. Lett. 91, 223904 (2003). [CrossRef] [PubMed]
  18. L. Hilico, C. Fabre, and E. Giacobino, "Operation of a "Cold-Atom Laser" in a Magneto-Optical Trap," Europhys. Lett. 18, 685-688 (1992). [CrossRef]
  19. W. Guerin, F. Michaud, and R. Kaiser, "Mechanisms for Lasing with Cold Atoms as the Gain Medium," Phys. Rev. Lett. 101, 093002 (2008). [CrossRef] [PubMed]
  20. Note that even though new interesting features appear when coherent feedback is involved [14], we will consider only incoherent (intensity) feedback.
  21. L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, "Threshold of a Random Laser with Cold Atoms," Phys. Rev. Lett. 102, 173903 (2009). [CrossRef] [PubMed]
  22. B. R. Mollow, "Stimulated Emission and Absorption near Resonance for Driven Systems," Phys. Rev. A 5, 2217-2222 (1972). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  24. D. Grison, B. Lounis, C. Salomon, J.-Y. Courtois, and G. Grynberg, "Raman Spectroscopy of Cesium Atoms in a Laser Trap," Europhys. Lett. 15, 149-154 (1991). [CrossRef]
  25. J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, "Nonlinear Spectroscopy of Cold Atoms in a Spontaneous-Force Optical Trap," Phys. Rev. Lett. 66, 3245-3248 (1991). [CrossRef] [PubMed]
  26. M. C.W. van Rossum and T. M. Nieuwenhuizen, "Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion," Rev. Mod. Phys. 71, 313-371 (1999). [CrossRef]
  27. We consider only isotropic scattering so that the transport length equals the scattering mean free path [26].
  28. K. Case and P. Zweifel, Linear transport theory (Addison-Wesley, 1967).
  29. K. Drozdowicz, E. Krynicka, and J. Dąbrowska, "Diffusion cooling of thermal neutrons in basic rock minerals by Monte Carlo simulation of the pulsed neutron experiments," App. Rad. Isot. 58, 727-733 (2003). [CrossRef]
  30. A. Lagendijk and B. A. van Tiggelen, "Resonant multiple scattering of light," Phys. Rep. 270, 143-215 (1996). [CrossRef]
  31. D. Brivio, "Random laser with cold atoms: extracting information from atomic fluorescence," Master Thesis, Universitá di Milano (2008).
  32. T. M. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, and W. Gawlik, "Probe spectroscopy in an operating magneto-optical trap: The role of Raman transitions between discrete and continuum atomic states," Phys. Rev. A 71, 013401 (2005). [CrossRef]
  33. G. Grynberg and C. Robilliard, "Cold atoms in dissipative optical lattices," Phys. Rep. 355, 335-451 (2001). [CrossRef]
  34. Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001). [CrossRef]
  35. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992).
  36. B. Gao, "Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: Resonance fluorescence," Phys. Rev. A 50, 4139-4156 (1994). [CrossRef] [PubMed]
  37. B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Systems," Phys. Rev. 188, 1969-1975 (1969). [CrossRef]
  38. W. Ketterle, K. B. Davis, M. A. Joffre, A. Martin, and D. E. Pritchard, "High Densities of Cold Atoms in a Dark Spontaneous-Force trap," Phys. Rev. Lett. 70, 2253-2256 (1993). [CrossRef] [PubMed]
  39. M. T. dePue, S. L. Winoto, D. J. Han, and D. S. Weiss, "Transient compression of a MOT and high intensity fluorescent imaging of optically thick clouds of atoms," Opt. Commun. 180, 73-79 (2000). [CrossRef]
  40. C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65, 33-36 (1990). [CrossRef] [PubMed]
  41. C. Jurczak, K. Sengstock, R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115, 480-484 (1995). [CrossRef]
  42. S. Bali, D. Hoffmann, J. Simán, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53, 3469-3472 (1996). [CrossRef] [PubMed]
  43. M. A. Noginov, J. Novak, D. Grigsby, and L. Deych, "Applicability of the diffusion model to random lasers with non-resonant feedback," J. Opt. A: Pure Appl. Opt. 8, S285-S295 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited