OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11274–11280

Continuous-wave Lyman-α generation with solid-state lasers

Martin Scheid, Daniel Kolbe, Frank Markert, Theodor W. Hänsch, and Jochen Walz  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11274-11280 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent continuous-wave Lyman-α source based on four-wave sum-frequency mixing in mercury vapor has been realized with solid-state lasers. The third-order nonlinear susceptibility is enhanced by the 61S–71S two-photon resonance and the near 61S–63P one-photon resonance. The phase matching curve for this four-wave mixing scheme is observed for the first time. In addition we investigate the two-photon enhancement of the Lyman-α yield and observe that the maxima of Lyman-α generation are shifted compared to the two-photon resonances of the different isotopes.

© 2009 Optical Society of America

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 31, 2009
Revised Manuscript: May 6, 2009
Manuscript Accepted: May 20, 2009
Published: June 22, 2009

Martin Scheid, Daniel Kolbe, Frank Markert, Theodor W. Hänsch, and Jochen Walz, "Continuous-wave Lyman-α generation with solid-state lasers," Opt. Express 17, 11274-11280 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. R. Vidal, "Four-wave frequency mixing in gases," in Tunable Lasers, L. F. Mollenhauer, and J. C. White, eds. (Springer, 1992), pp 57-113.
  2. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, "Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton," J. Opt. Soc. Am. B 7, 1254-1259 (1990). [CrossRef]
  3. S. A. Batishe, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A Mostovnikov, P. A. Naumenkov, G.T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Y. Shreider, "Laser action near the L-α line in hydrogen and deuterium," Sov. Tech. Phys. Lett. 3, 473 (1977).
  4. R. Mahon, T. J. McIlrath, and D. W. Koopman, "Nonlinear generation of Lyman-alpha radiation," Appl. Phys. Lett. 33, 305-307 (1978). [CrossRef]
  5. D. Cotter, "Tunable narrow-band coherent vuv source for the Lyman-alpha region," Opt. Commun. 31, 397-400 (1979). [CrossRef]
  6. R. Wallenstein, "Generation of narrowband tunable vuv radiation at the Lyman-α wavelength," Opt. Commun. 33, 119-122 (1980). [CrossRef]
  7. L. Cabaret, C. Delsart, and C. Blondel, "High resolution spectroscopy of the hydrogen Lyman-α line stark structure using a vuv single mode pulsed laser system," Opt. Commun. 61, 116-119 (1987). [CrossRef]
  8. G. B. Andresen, W. Bertsche, P. D. Bowe, C. C. Bray, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, J. Fajans, M. C. Fujiwara, R. Funakoshi, D. R. Gill, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, R. Hydomako, M. J. Jenkins, L. V. Jørgensen, L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D. M. Silveira, J. W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, and Y. Yamazaki, "Compression of antiproton clouds for antihydrogen trapping," Phys. Rev. Lett. 100, 203401 (2008). [CrossRef] [PubMed]
  9. G. Gabrielse, P. Larochelle, D. Le Sage, B. Levitt, W. S. Kolthammer, R. McConnell, P. Richerme, J. Wrubel, A. Speck, M. C. George, D. Grzonka, W. Oelert, T. Sefzick, Z. Zhang, A. Carew, D. Comeau, E. A. Hessels, C. H. Storry, M. Weel, and J. Walz, "Antihydrogen production within a Penning-Ioffe trap," Phys. Rev. Lett. 100, 113001 (2008). [CrossRef] [PubMed]
  10. I. D. Setija, H. G. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, "Optical cooling of atomic hydrogen in a magnetic trap," Phys. Rev. Lett. 70, 2257-2260 (1993). [CrossRef] [PubMed]
  11. K. S. E. Eikema, J. Walz, and T. W. Hänsch, "Continuous coherent Lyman-α excitation of atomic hydrogen," Phys. Rev. Lett 83,3828-3831 (1999); "Continuous wave coherent Lyman-α radiation,"  ibid. 86, 5679-5682 (2001). [CrossRef]
  12. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, "750mW continuouswave solid-state deep ultraviolet source at the 253.7 nm transition in mercury," Opt. Lett. 32, 955-957 (2007). [CrossRef] [PubMed]
  13. F. Markert, M. Scheid, D. Kolbe, and J. Walz, "4W continuous-wave narrow-linewidth tunable solid-state laser source at 546nm by externally frequency doubling a ytterbium-doped single-mode fiber laser system," Opt. Expr. 15, 14476-14481 (2007). [CrossRef]
  14. A. V. Smith and W. J. Alford, "Practical guide for 7 S resonant frequency mixing in mercury: generation of light in the 230-185- and 140-120-nm ranges," J. Opt. Soc. Am. B 4, 1765-1770 (1987). [CrossRef]
  15. J. Walz, A. Pahl, K. S. E. Eikema, and T. W. Hänsch, "The first continuous coherent Lyman-α source," Nucl. Phys. A 692163c-167c (2001). [CrossRef]
  16. G. C. Bjorklund, "Effects of focusing on third-order nonlinear processes in isotropic media," IEEE J. Quantum Electron. 11, 287-296 (1975). [CrossRef]
  17. A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E Eikema, "Generation of continuous coherent radiation at Lyman-α and 1 S-2 S spectroscopy of atomic hydrogen," Laser Phys. 15,4 6-54 (2005).
  18. A. V. Smith and W. J. Alford, "Vacuum ultraviolet oscillator strengths of Hg measured by sum-frequency mixing," Phys. Rev. A 33, 3172-3179 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited