OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11350–11359

Surface plasmon effects on two photon luminescence of gold nanorods

Da-Shin Wang, Fu-Yin Hsu, and Chii-Wann Lin  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11350-11359 (2009)
http://dx.doi.org/10.1364/OE.17.011350


View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gold nanorods emit strong photoluminescence under two photon excitation; the efficient two photon lumininescence (TPL) arises from the local field enhancement assisted by surface plasmons. The surface plasmon effects on the TPL efficiency and spectrum are investigated by measuring the TPL of gold nanorods with various aspect ratios. A large TPL efficiency is found when incident light wavelength coincides with the longitudinal surface plasmon mode of the gold nanorods. However, the emission spectra of nanorods with various aspect ratios look similar and exhibit modest surface plasmon features, which implies a major non-radiative decay of excited surface plasmons.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 18, 2009
Revised Manuscript: June 17, 2009
Manuscript Accepted: June 18, 2009
Published: June 22, 2009

Citation
Da-Shin Wang, Fu-Yin Hsu, and Chii-Wann Lin, "Surface plasmon effects on two photon luminescence of gold nanorods," Opt. Express 17, 11350-11359 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969). [CrossRef]
  2. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986). [CrossRef]
  3. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984). [CrossRef]
  4. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11(12), 1385–1391 (2003). [CrossRef]
  5. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005). [CrossRef]
  6. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005). [CrossRef]
  7. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef]
  8. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, “Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells,” Opt. Express 16(3), 1590–1599 (2008). [CrossRef]
  9. L. Bickford, J. Sun, K. Fu, N. Lewinski, V. Nammalvar, J. Chang, and R. Drezek, “Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy,” Nanotechnology 19(31), 315102 (2008). [CrossRef]
  10. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000). [CrossRef]
  11. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesisof high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001). [CrossRef]
  12. S. Link and M. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999). [CrossRef]
  13. S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005). [CrossRef]
  14. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Barcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73(15), 155404 (2006). [CrossRef]
  15. C. J. Orendorff and C. J. Murphy, “Quantitation of metal content in the silver-assisted growth of gold nanorods,” J. Phys. Chem. B 110(9), 3990–3994 (2006). [CrossRef]
  16. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef]
  17. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004). [CrossRef]
  18. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited