OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11486–11494

Structural-configurated magnetic plasmon bands in connected ring chains

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11486-11494 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetic resonance coupling between connected split ring resonators (SRRs) and magnetic plasmon (MP) excitations in the connected SRR chains were theoretically studied. By changing the connection configuration, two different coupling behaviors were observed, and therefore two kinds of MP bands were formed in the connected ring chains accordingly. From the extracted dispersion properties of MPs, forward and backward characteristics of the guided waves are well exhibited corresponding to the homo- and hetero-connected chains. Notably, thanks to the conductive coupling the revealed MP waves both have wide bandwidth even starting from the zero frequency. These results are suggested to provide instructions to build new kinds of subwavelength waveguides.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

Original Manuscript: March 16, 2009
Revised Manuscript: May 6, 2009
Manuscript Accepted: May 31, 2009
Published: June 24, 2009

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, "Structural-configurated magnetic plasmon bands in connected ring chains," Opt. Express 17, 11486-11494 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu. R. K. Lee, and A. Scherer, "Coupled resonator optical waveguides: a proposal and analysis," Opt. Lett. 24,711-713 (1999). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, AriA. G. Requicha, and H. A. Atwater, "Plasmonics - a route to nanoscale optical devices," Adv. Mater. 13,1501 (2001). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A.G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  5. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70,125429 (2004). [CrossRef]
  6. W. N. Hardy and L. A. Whitehead, "Split-ring resonator for use in magnetic resonance from 200-2000 MHz," Rev. SCI. Instr. 52,213-216 (1981). [CrossRef]
  7. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  9. T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  10. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  11. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  12. V. M. Shalaev, "Optical negative-index metamaterial," Nat. Photon. 1, 41-48 (2007). [CrossRef]
  13. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252-6261 (2002). [CrossRef]
  14. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magneto-inductive waveguide," Electron. lett. 38,371-373 (2002). [CrossRef]
  15. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymara, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett. 87,072501 (2005). [CrossRef]
  16. O. Sydoruk, A. Radkovskaya O. Zhuromskyy, E. Shamonina, M. Shamonin,C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73,224406 (2006). [CrossRef]
  17. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic plasmon resonance," Phys. Rev. B 73, 036609 (2006). [CrossRef]
  18. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  19. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16,3560-3565 (2008). [CrossRef] [PubMed]
  20. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, "Selective switch made from a graded anosandwich chain," Appl. Phys. Lett. 93,233102 (2008). [CrossRef]
  21. M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, "Electroinductive waves in chains of complementary metamaterial elements," Appl. Phys. Lett. 88,083503 (2006). [CrossRef]
  22. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006). [CrossRef] [PubMed]
  23. T. Li, J. Q. Li, F.M. Wang, Q. J. Wang, H. Liu, S.N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures", Appl. Phys. Lett. 90, 251112 (2007). [CrossRef]
  24. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, "Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials," J. Appl. Phys. 103,023104 (2008). [CrossRef]
  25. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Stat. Sol. (B) 244 (4), 1170-1175 (2007). [CrossRef]
  26. N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Mater. 20, 1-5 (2008). [CrossRef]
  27. N. Liu and H. Giessen, "Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling," Opt. Express 16, 21233-21238 (2008). [CrossRef] [PubMed]
  28. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon. 3, 157-162 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (445 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited