OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11558–11564

Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation

Yiqiang Qin, Chao Zhang, Ding Zhu, Yongyuan Zhu, Hongchen Guo, Guangjun You, and Singhai Tang  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11558-11564 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interactions between electromagnetic wave and photonic quasicrystals are investigated. A terahertz (THz) source with multi-frequency modes in an optical LiTaO3 superlattice produced by quasiperiodic (Fibonacci) domain-inverted ferroelectric material is demonstrated experimentally. Using the canonical pump-probe experimental technique, THz radiations in both forward and backward propagations are in-situ detected simultaneously. Four pronounced THz frequencies at 1.18, 0.78, 0.59 and 0.37 THz in Fourier transform spectrum are observed. The physical properties of THz waves inside quasiperiodic superlattice are discussed.

© 2009 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7120) Ultrafast optics : Ultrafast phenomena
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: April 20, 2009
Revised Manuscript: June 13, 2009
Manuscript Accepted: June 14, 2009
Published: June 25, 2009

Yiqiang Qin, Chao Zhang, Ding Zhu, Yongyuan Zhu, Hongchen Guo, Guangjiun You, and Singhai Tang, "Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation," Opt. Express 17, 11558-11564 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in Fibonacci dielectric multilayers," Phys. Rev. Lett. 72, 633-636 (1994). [CrossRef] [PubMed]
  2. A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, "Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy," Phys. Rev. Lett. 86, 2158-2161 (2001). [CrossRef] [PubMed]
  3. C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, "Quasiperiodic Envelope Solitons," Phys. Rev. Lett. 83, 4740-4743 (1999). [CrossRef]
  4. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,"Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  5. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, "Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice," Phys. Rev. Lett. 94, 183903 (2005). [CrossRef] [PubMed]
  6. M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, "Optimized Structures for Photonic Quasicrystals," Phys. Rev. Lett. 101, 073902 (2008). [CrossRef] [PubMed]
  7. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, "Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3," Phys. Rev. Lett. 78, 2752-2755 (1997). [CrossRef]
  8. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997). [CrossRef]
  9. R. Lifshitz, A. Arie, and A. Bahabad, "Photonic Quasicrystals for Nonlinear Optical Frequency Conversion," Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  10. G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, "Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses," Phys. Rev. Lett. 83, 1578-1581 (1999). [CrossRef]
  11. S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High-power narrow-band terahertz generation using large-aperturephotoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999). [CrossRef]
  12. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Appl. Phys. Lett. 71, 2076-2078 (1997). [CrossRef]
  13. K. Yang, P. Richards and Y. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971). [CrossRef]
  14. M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, "Femtosecond diffracting Fourier-transform infrared interferometer," Opt. Lett. 21, 964-966 (1996). [CrossRef] [PubMed]
  15. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505 (2000). [CrossRef]
  16. Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003). [CrossRef]
  17. B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971). [CrossRef]
  18. Y.-Y.  Zhu, and N.-B.  Ming, "Dielectric superlattices for nonlinear optical effects," Opt. Quantum. Electron. 31, 1093-1128 (1999). [CrossRef]
  19. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattice engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001). [CrossRef]
  20. D. H. Auston, and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron 24, 184-197 (1988). [CrossRef]
  21. G. H. Ma, S. H. Tang, G. Kh. Kitaeva and I. I. Naumova, "Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification," J. Opt. Soc. Am. B 23, 81-89 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited