OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11618–11637

Influence of partial coherence on analyzer-based imaging with asymmetric Bragg reflection

Peter Modregger, Daniel Lübbert, Peter Schäfer, Jane Richter, Rolf Köhler, and Tilo Baumbach  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11618-11637 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Image magnification via twofold asymmetric Bragg reflection (a setup called the ”Bragg Magnifier”) is a recently established technique allowing to achieve both sub-micrometer spatial resolution and phase contrast in X-ray imaging. The present article extends a previously developed theoretical formalism to account for partially coherent illumination. At a typical synchrotron setup polychromatic illumination is identified as the main influence of partial coherence and the implications on imaging characteristics are analyzed by numerical simulations. We show that contrast decreases by about 50% when compared to the monochromatic case, while sub-micrometer spatial resolution is preserved. The theoretical formalism is experimentally verified by correctly describing the dispersive interaction of the two orthogonal magnifier crystals, an effect that has to be taken into account for precise data evaluation.

© 2009 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(110.2990) Imaging systems : Image formation theory
(340.7460) X-ray optics : X-ray microscopy

ToC Category:
Coherence and Statistical Optics

Original Manuscript: May 12, 2009
Revised Manuscript: June 12, 2009
Manuscript Accepted: June 19, 2009
Published: June 25, 2009

Peter Modregger, Daniel Lübbert, Peter Schäfer, Jane Richter, Rolf Köhler, and Tilo Baumbach, "Influence of partial coherence on analyzer-based imaging with asymmetric Bragg reflection," Opt. Express 17, 11618-11637 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Forster, K. Goetz and P. Zaumseil, "Double crystal diffractometry for the characterization of targets for laser fusion experiments," Krist. Tech. 15, 937-945 (1980). [CrossRef]
  2. M. Kuriyama, R. C. Dobbyn, R. D. Spal, H. E. Burdette and D. R. Black, "Hard x-ray microscope with submicrometer spatial resolution," J. Res. Natl. Inst. Stand. Technol. 95, 559-574 (1990).
  3. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson and S. W. Wilkins, "Phase-contrast imaging of weakly absorbing materials using hard X-rays," Nature 373, 595-598 (1995). [CrossRef]
  4. V. N. Ingal and E. A. Beliaevskaya, "Imaging of biological objects in the plane-wave diffraction scheme," Nuovo Cimento 19, 553-560 (1997). [CrossRef]
  5. K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima and J. Matsui, "X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions," Appl. Phys. Lett. 78, 132-134 (2001). [CrossRef]
  6. R. Kohler and P. Schafer, "Asymmetric Bragg reflection as magnifying optics," Cryst. Res. Technol. 37, 734-746 (2002). [CrossRef]
  7. D. Korytar, P. Mikulık, C. Ferrari, J. Hrdy, T. Baumbach, A. Freund and A. Kubena, "Two-dimensional x-ray magnification based on a monolithic beam conditioner," J. Phys. D: Appl. Phys. 36, A65-A68 (2003). [CrossRef]
  8. M. Stampanoni, G. Borchert and R. Abela, "Towards nanotomography with asymmetrically cut crystals," Nucl. Instrum. Meth. A 551, 119-124 (2005). [CrossRef]
  9. M. G. Honnicke and C. Cusatis, "Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals," Rev. Sci. Instrum. 78, 113708 (2007). [CrossRef] [PubMed]
  10. R. Spal, "Submicrometer resolution hard X-Ray holography with the asymmetric Bragg diffraction microscope," Phys. Rev. Lett. 86, 3044-3047 (2001). [CrossRef] [PubMed]
  11. J. Keyrilainen, M. Fernandez and P. Suortti, "Refraction contrast in x-ray imaging," Nucl. Instrum. Meth. A 488, 419-427 (2002). [CrossRef]
  12. Ya.I. Nesterets, T. E. Gureyev, D. Paganin, K. M. Pavlov and S. W. Wilkins, "Quantitative diffraction-enhanced x-ray imaging of weak objects," J. Phys. D: Appl. Phys. 37, 1262-1274 (2004). [CrossRef]
  13. P. Modregger, D. Lubbert, P. Schafer and R. Kohler, "Magnified x-ray phase imaging using asymmetric Bragg reflection: Experiment and theory," Phys. Rev. B 74, 054107 (2006). [CrossRef]
  14. J. P. Guigay, E. Pagot and P. Cloetens, "Fourier optics approach to X-ray analyser-based imaging," Opt. Commun. 270, 180-188 (2007). [CrossRef]
  15. A. Bravin, V. Mocella, P. Coan, A. Astolfo and C. Ferrero, "A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging," Opt. Express 15, 5641-5648 (2007). [CrossRef] [PubMed]
  16. Ya. I. Nesterets, T. E. Gureyev and S. W. Wilkins, "Polychromaticity in the combined propagationbased/ analyser-based phase-contrast imaging," J. Phys. D: Appl. Phys. 38, 4259-4271 (2005). [CrossRef]
  17. A. Authier: Dynamical Theory of X-Ray Diffraction, Vol. 11 of IUCr Monographs on Crystallography, 2nd ed. (Oxford University Press, Oxford 2001).
  18. P. Modregger, D. Lubbert, P. Schafer and R. Kohler, "Spatial resolution in Bragg-magnified X-ray images as determined by Fourier analysis," Phys. Status Solidi(a) 204, 2746-2752 (2007). [CrossRef]
  19. A. Rack, H. Riesemeier, S. Zabler, T. Weitkamp, B. Muller, G. Weidemann, P. Modregger, J. Banhart, L. Helfen, A. Danilewsky, H. Graber, R. Heldele, B. Mayzel, J. Goebbels and T. Baumbach, "The high resolution synchrotron-based imaging stations at the BAMline (BESSY) and TopoTomo (ANKA)," Proc. SPIE 7078, 70780X (2008). [CrossRef]
  20. P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel and A. Bravin, "Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction," J. Synch. Rad. 12, 241-245 (2005) [CrossRef]
  21. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay and M. Schlenker, "Phase objects in synchrotron radiation hard X-ray imaging," J. Phys. D: Appl. Phys. 29, 133-146 (1996). [CrossRef]
  22. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens and E. Ziegler, "X-ray phase imaging with a grating interferometer," Opt. Express 13, 6296-6304 (2005). [CrossRef] [PubMed]
  23. M. Kuriyama,W. J. Boettinger and G. G. Cohen, "Synchrotron radiation topography," Annu. Rev. Mater. Sci. 12, 23-50 (1982). [CrossRef]
  24. J. Als-Niehlsen and D. McMorrow, Elements of Modern X-Ray Physics, (Wiley & Sons, 2001).
  25. P. Modregger, D. Lubbert, P. Schafer, R. Kohler, T. Weitkamp, M. Hanke, and T. Baumbach, "Fresnel diffraction in the case of an inclined image plane," Opt. Express 16, 5141-5149 (2008). [CrossRef] [PubMed]
  26. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, San Fransisco), pp. 106-110 (1968).
  27. P. Modregger, D. Lubbert, P. Schafer and R. Kohler, "Two dimensional diffraction enhanced imaging algorithm," Appl. Phys. Lett. 90, 193501 (2007). [CrossRef]
  28. E. Wilson: Fourier Series and Optical Transform Techniques in Contemporary Optics, (Wiley & Sons, 1995).
  29. C. M. Sparrow, "On spectroscopic resolving power," Astrophys. J. 44, 76-86 (1916). [CrossRef]
  30. B. Batterman and H. Cole, "Dynamical diffraction of x rays by perfect crystals," Rev. Mod. Phys. 36, 681-716 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited