OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11710–11718

Grating induced transparency (GIT) and the dark mode in optical waveguides

Hsi-Chun Liu and Amnon Yariv  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11710-11718 (2009)
http://dx.doi.org/10.1364/OE.17.011710


View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and describe a new class of optical modes consisting of superposition of three waveguide modes which can be supported by a few-mode waveguide spatially modulated by two co-spatial gratings. These supermodes bear a close, but not exact, formal analogy to the three-level quantum states involved in EIT and its attendant slow light propagation characteristics. Of particular interest is the supermode which we call the dark mode in which, in analogy with the dark state of EIT, one of the three uncoupled waveguide modes is not excited. This mode has unique dispersion characteristics that translate into a slow light propagation which possesses high bandwidth-delay product and can form the basis for a new generation of optical resonators and lasers.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: May 18, 2009
Revised Manuscript: June 21, 2009
Manuscript Accepted: June 21, 2009
Published: June 26, 2009

Citation
Hsi-Chun Liu and Amnon Yariv, "Grating induced transparency (GIT) and the dark mode in optical waveguides," Opt. Express 17, 11710-11718 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50(7), 36-42 (1997). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397(6720), 594-598 (1999). [CrossRef]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409(6819), 490-493 (2001). [CrossRef]
  4. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69(6), 063804 (2004). [CrossRef]
  5. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29(6), 626-628 (2004). [CrossRef]
  6. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93(23), 233903 (2004). [CrossRef]
  7. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, "Induced transparency and absorption in coupled whispering-gallery microresonators," Phys. Rev. A 71(4), 043804 (2005). [CrossRef]
  8. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef]
  9. Q. F. Xu, J. Shakya, and M. Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14(14), 6463-6468 (2006). [CrossRef]
  10. K. Totsuka, N. Kobayashi, and M. Tomita, "Slow light in coupled-resonator-induced transparency," Phys. Rev. Lett. 98(21), 213904 (2007). [CrossRef]
  11. L. Yosef Mario and M. K. Chin, "Optical buffer with higher delay-bandwidth product in a two-ring system," Opt. Express 16(3), 1796-1807 (2008). [CrossRef]
  12. Y. F. Xiao, B. K. Min, X. Jiang, C. H. Dong, and L. Yang, "Coupling Whispering-Gallery-Mode Microcavities With Modal Coupling Mechanism," IEEE J. Quantum Electron. 44(11), 1065-1070 (2008). [CrossRef]
  13. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Express, New York, 2007).
  14. E. Peral and A. Yariv, "Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering," J. Lightwave Technol. 17(5), 942-947 (1999). [CrossRef]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York and London, 1974).
  16. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955).
  17. X. Sun, H.-C. Liu, and A. Yariv, "Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system," Opt. Lett. 34(3), 280-282 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited