OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11860–11868

Photoluminescence eigenmodes in a single ZnO nanobelt covering the ultraviolet and visible band

Huibing Mao, Ke Yu, Jiqing Wang, Jianguo Yu, and Ziqiang Zhu  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11860-11868 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photoluminescence properties of a ZnO nanobelt are investigated. Both the band-edge emission and the green-yellow emission bands have a series of eigenmodes. The theoretical results demonstrate that in the band-edge emission region the photoluminescence modes are determined by the polariton modes. In the green-yellow band there is no coupling between the photons and excitons and the photoluminescence modes are determined by the transverse Fabry-Perot modes. The photoluminescence spectra at different spots confirm that the Fabry-Perot modes are determined by the transverse size. Furthermore, the fitting results show in the waveband in the ultraviolet and visible band the quality-factor Q of the cavity is decreased from 280 to 70 with the increase of the wavelength.

© 2009 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: May 12, 2009
Revised Manuscript: May 27, 2009
Manuscript Accepted: May 27, 2009
Published: June 29, 2009

Huibing Mao, Ke Yu, Jiqing Wang, Jianguo Yu, and Ziqiang Zhu, "Photoluminescence eigenmodes in a single ZnO nanobelt covering the ultraviolet and visible band," Opt. Express 17, 11860-11868 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef]
  3. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998). [CrossRef]
  4. R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994). [CrossRef]
  5. X. C. Shen, Spectroscopy and Optical properties of Semiconductor (Science Press, Beijing, 2002).
  6. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004). [CrossRef]
  7. L. K. v. Vugt, S. Ruhle, P. Ravindram, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polariton confined ina ZnO nanowire cavity,” Phys. Rev. Lett. 97, 147401 1–4 (2006).
  8. H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999). [CrossRef]
  9. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef]
  10. S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008). [CrossRef]
  11. L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008). [CrossRef]
  12. E. Feigenbaum and M. Orenstein, “Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons,” Opt. Express 15(5), 2607–2612 (2007). [CrossRef]
  13. D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005). [CrossRef]
  14. M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008). [CrossRef]
  15. A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000). [CrossRef]
  16. A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005). [CrossRef]
  17. J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981). [CrossRef]
  18. B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited