OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 12132–12144

Ultimate spatial resolution with Diffuse Optical Tomography

Leila Azizi, Katarzyna Zarychta, Dominique Ettori, Eric Tinet, and Jean-Michel Tualle  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 12132-12144 (2009)
http://dx.doi.org/10.1364/OE.17.012132


View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate the ultimate transverse spatial resolution that can be expected in Diffuse Optical Tomography, in the configuration of projection imaging. We show how such a performance can be approached using time-resolved measurements and reasonable assumptions, in the context of a linearized diffusion model.

© 2009 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

History
Original Manuscript: April 20, 2009
Revised Manuscript: June 28, 2009
Manuscript Accepted: June 30, 2009
Published: July 2, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Leila Azizi, Katarzyna Zarychta, Dominique Ettori, Eric Tinet, and Jean-Michel Tualle, "Ultimate spatial resolution
with Diffuse Optical Tomography," Opt. Express 17, 12132-12144 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977). [CrossRef]
  2. J. R. Wilson, D. M. Mancini, K. McCully, N. Ferraro, V. Lanoce, and B. Chance, “Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure,” Circulation 80(6), 1668–1674 (1989). [CrossRef]
  3. T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, and B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exerc. 28(Supplement), 62 (1996).
  4. S. Takatani and J. Ling, “Optical oximetry sensors for whole blood and tissue,” IEEE Eng. Med. Biol. Mag. 13(3), 347–357 (1994). [CrossRef]
  5. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999). [CrossRef]
  6. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001). [CrossRef]
  7. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999). [CrossRef]
  8. R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995). [CrossRef]
  9. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 10(2), 024027 (2005).
  10. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002). [CrossRef]
  11. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006). [CrossRef]
  12. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt. 45(31), 8142–8151 (2006). [CrossRef]
  13. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-6-3-49 . [CrossRef]
  14. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head”, Op. Express 10, 159–170 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-3-159
  15. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004). [CrossRef]
  16. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004). [CrossRef]
  17. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4(5), 513–526 (2005).
  18. B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Möller, R. Macdonald, P. M. Schlag, and H. Rinneberg, “In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms”, Op. Express 13, 8571–8583 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8571 [CrossRef]
  19. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005). [CrossRef]
  20. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005). [CrossRef]
  21. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005). [CrossRef]
  22. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. A. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003). [CrossRef]
  23. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8043 . [CrossRef]
  24. R. L. Barbour, H. L. Graber, J. W. Chang, S. L. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995). [CrossRef]
  25. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef]
  26. A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995). [CrossRef]
  27. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997). [CrossRef]
  28. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000). [CrossRef]
  29. M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett. 31(15), 2311–2313 (2006). [CrossRef]
  30. A. Khireddine, K. Benmahammed, and W. Puech, “Digital image restoration by Wiener filter in 2D case,” Adv. Eng. Software 38(7), 513–516 (2007). [CrossRef]
  31. H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16(17), 12423–12434 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12423 . [CrossRef]
  32. V. Chernomordik, R. Nossal, and A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23(11), 1857–1861 (1996). [CrossRef]
  33. V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001). [CrossRef]
  34. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-5048 . [CrossRef]
  35. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited