OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 12145–12154

Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 12145-12154 (2009)
http://dx.doi.org/10.1364/OE.17.012145


View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for improving the sensing capability of grating coupled surface plasmon resonance (GCSPR) sensors. The grating is rotated azimuthally (φ) until the excitation of double surface plasmon polaritions (SPPs) by a single wavelength is possible. Close to this condition, further tuning of the incident wavelength will merge the double SPPs into a multi-SPP resonance which is angularly broad but spectrally sharp. This is the condition where the momentum vector of the propagating SPP is perpendicular to the incident light momentum. We demonstrate this sensitivity enhancement on a Au grating surface using a dodecanethiol (C12) self-assembled monolayer (SAM). Using this method, a shift in resonance angle as large as 3° can be observed. The simulated sensitivity of this method shows that a sensitivity up to 800°/RIU is achievable, which is one order of magnitude greater than that in a conventional fixed grating (φ=0°) as well as the prism-coupled Kretschmann configuration.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 4, 2009
Revised Manuscript: June 15, 2009
Manuscript Accepted: June 15, 2009
Published: July 2, 2009

Citation
F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, "Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control," Opt. Express 17, 12145-12154 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” (Springer-Verlag, 1988).
  2. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998). [CrossRef]
  3. I. Lundstrom, “Real-time biospecific interaction analysis,” Biosens. Bioelectron. 9(9-10), 725–736 (1994). [CrossRef]
  4. W. Lukosz, “Integrated-optical and surface-plasmon sensors for direct affinity sensing. Part II: Anisotropy of adsorbed or bound protein adlayers,” Biosens. Bioelectron. 12(3), 175–184 (1997). [CrossRef]
  5. K. A. Peterlinz and R. Georgiadis, “In Situ Kinetics of Self-Assembly by Surface Plasmon Resonance Spectroscopy,” Langmuir 12(20), 4731–4740 (1996). [CrossRef]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  7. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
  8. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  9. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorod: systhesis, characterization and application,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005). [CrossRef]
  10. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79(2), 572–579 (2007). [CrossRef]
  11. J. Melendez, R Carr, D. U. Bartholomew, K Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B Chem. 35(1-3), 212–216 (1996). [CrossRef]
  12. B. Liedberg, I. Lundstrom, and E. Stenberg, “Principle of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993). [CrossRef]
  13. R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995). [CrossRef]
  14. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuator B 54(1-2), 16–24 (1999). [CrossRef]
  15. D. W. Unfricht, S. L. Colpitts, S. M. Fernandez, and M. A. Lynes, “Grating-coupled surface plasmon resonance: a cell and protein microarray platform,” Proteomics 5(17), 4432–4442 (2005). [CrossRef]
  16. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef]
  17. K. H. Yoon, M. L. Shuler, and S. J. Kim, “Design optimization of nano-grating surface plasmon resonance sensors,” Opt. Express 14(11), 4842–4849 (2006). [CrossRef]
  18. D. C. Cullen and C. R. Lowe, “A direct surface plasmon-polariton immunosensor: Preliminary investigation of the non-specific adsorption of serum components to the sensor interface,” Sens. Actuators B Chem. 1(1-6), 576–579 (1990). [CrossRef]
  19. M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007). [CrossRef]
  20. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15(13), 8163–8169 (2007). [CrossRef]
  21. J. M. Brockman and S. M. Fernandes, “Grating-coupled surface plasmon resonance for rapid, label-free, array based sensing,” Am. Lab. 33, 37–41 (2001).
  22. R. Baggio, G. J. Carven, A. Chiulli, M. Palmer, L. J. Stern, and J. E. Arenas, “Induced fit of an epitope peptide to a monoclonal antibody probed with a novel parallel surface plasmon resonance assay,” J. Biol. Chem. 280(6), 4188–4194 (2005).
  23. J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005). [CrossRef]
  24. D. Y. Kim, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44(16), 3218–3223 (2005). [CrossRef]
  25. F. Romanato, K. H. Lee, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435–245441 (2008). [CrossRef]
  26. C. D. Bain, E. B. Troughton, Yu.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989). [CrossRef]
  27. B. Thomas, O. Reilly, and I. H. I. Smith, “Linewidth uniformity in Lloyd's mirror interference lithography systems,” J. Vac. Sci. Technol. B 26(6), 2131–2134 (2008).
  28. F. Schreiber, “Structure and growth of self-assembling monolayers,” Prog. Surf. Sci. 65(5-8), 151–257 (2000). [CrossRef]
  29. X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited