OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12203–12209

Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg–Landau and Swift–Hohenberg equations

Bin Liu, Ying-Ji He, Zhi-Ren Qiu, and He-Zhou Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12203-12209 (2009)
http://dx.doi.org/10.1364/OE.17.012203


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Annularly and radially phase-modulated spatiotemporal necklace-shaped patterns (SNPs) in the complex Ginzburg–Landau (CGL) and complex Swift–Hohenberg (CSH) equations are theoretically studied. It is shown that the annularly phase-modulated SNPs, with a small initial radius of the necklace and modulation parameters, can evolve into stable fundamental or vortex solitons. To the radially phase-modulated SNPs, the modulated “beads” on the necklace rapidly vanish under strong dissipation in transmission, which may have potential application for optical switching in signal processing. A prediction that the SNPs with large initial radii keep necklace-ring shapes upon propagation is demonstrated by use of balance equations for energy and momentum. Differences between both models for the evolution of solitons are revealed.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 9, 2009
Revised Manuscript: May 10, 2009
Manuscript Accepted: May 13, 2009
Published: July 6, 2009

Citation
Bin Liu, Ying-Ji He, Zhi-Ren Qiu, and He-Zhou Wang, "Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg–Landau and Swift–Hohenberg equations," Opt. Express 17, 12203-12209 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002). [CrossRef]
  2. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, 2005), pp. 157–160.
  3. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605 (2001). [CrossRef]
  4. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97(7), 073904 (2006). [CrossRef] [PubMed]
  5. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76(4), 045803 (2007). [CrossRef]
  6. J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009). [CrossRef] [PubMed]
  7. A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J. Firth, “Two-dimensional clusters of solitary structures in driven optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 046606 (2002). [CrossRef] [PubMed]
  8. D. V. Skryabin and A. G. Vladimirov, “Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101 (2002). [CrossRef] [PubMed]
  9. Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media,” Opt. Express 15(26), 17502–17508 (2007). [CrossRef] [PubMed]
  10. J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Optical bullets and ‘rockets’ in nonlinear dissipative systems and their transformations and interactions,” Opt. Express 14(9), 4013–4025 (2006). [CrossRef] [PubMed]
  11. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75(3), 033811 (2007). [CrossRef]
  12. Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1 Pt 2), 016611 (2006). [CrossRef] [PubMed]
  13. J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994). [CrossRef] [PubMed]
  14. J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066610 (2002). [CrossRef]
  15. N. Akhmediev and A. Ankiewicz, “Dissipative solitons in the complex Ginzburg–Landau and Swift–Hohenberg equations,” Lect. Notes Phys. 661, 1–17 (2005). [CrossRef]
  16. J. Buceta, K. Lindenberg, and J. M. R. Parrondo, “Stationary and oscillatory spatial patterns induced by global periodic switching,” Phys. Rev. Lett. 88(2), 024103 (2002). [CrossRef] [PubMed]
  17. V. J. Sánchez-Morcillo and K. Staliunas, “Stability of localized structures in the Swift-Hohenberg equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(55 Pt B), 6153–6156 (1999). [CrossRef]
  18. K.-I. Maruno, A. Ankiewicz, and N. Akhmediev, “Exact soliton solutions of the one-dimensional complex Swift–Hohenberg equation,” Physica D 176(1-2), 44–66 (2003). [CrossRef]
  19. J. Burke and E. Knobloch, “Localized states in the generalized Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5 Pt 2), 056211 (2006). [CrossRef] [PubMed]
  20. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73(5), 640–643 (1994). [CrossRef] [PubMed]
  21. M. F. Hilali, S. Métens, P. Borckmans, and G. Dewel, “Pattern selection in the generalized Swift-Hohenberg model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(3), 2046–2052 (1995). [CrossRef] [PubMed]
  22. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, (Springer, 1984).
  23. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  24. L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and V. M. Pérez-García, “Soliton “molecules”: robust clusters of spatiotemporal optical solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt 2), 046610 (2003). [CrossRef] [PubMed]
  25. D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F. Lederer, and L. Torner, “Soliton clusters in three-dimensional media with competing cubic and quintic nonlinearities,” J. Opt. B Quantum Semiclassical Opt. 6(5), S333–S340 (2004). [CrossRef]
  26. M. Tlidi and P. Mandel, “Three-dimensional optical crystals and localized structures in cavity second harmonic generation,” Phys. Rev. Lett. 83(24), 4995–4998 (1999). [CrossRef]
  27. M. Tlidi, “Three-dimensional crystals and localized structures in diffractive and dispersive nonlinear ring cavities,” J. Opt. B Quantum Semiclassical Opt. 2(3), 438–442 (2000). [CrossRef]
  28. M. Soljačić, S. Sears, and M. Segev, “Self-trapping of ‘necklace’ beams in self-focusing Kerr media,” Phys. Rev. Lett. 81(22), 4851–4854 (1998). [CrossRef]
  29. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited