OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12293–12308

Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy

Liang Gao, Robert T. Kester, and Tomasz S. Tkaczyk  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12293-12308 (2009)
http://dx.doi.org/10.1364/OE.17.012293


View Full Text Article

Enhanced HTML    Acrobat PDF (1684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An image slicing spectrometer (ISS) for microscopy applications is presented. Its principle is based on the redirecting of image zones by specially organized thin mirrors within a custom fabricated component termed an image slicer. The demonstrated prototype can simultaneously acquire a 140nm spectral range within its 2D field of view from a single image. The spectral resolution of the system is 5.6nm. The FOV and spatial resolution of the ISS depend on the selected microscope objective and for the results presented is 45 × 45µm2 and 0.45µm respectively. This proof-of-concept system can be easily improved in the future for higher (both spectral and spatial) resolution imaging. The system requires no scanning and minimal post data processing. In addition, the reflective nature of the image slicer and use of prisms for spectral dispersion make the system light efficient. Both of the above features are highly valuable for real time fluorescent-spectral imaging in biological and diagnostic applications.

© 2009 OSA

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(180.2520) Microscopy : Fluorescence microscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Microscopy

History
Original Manuscript: May 6, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: June 28, 2009
Published: July 6, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Liang Gao, Robert T. Kester, and Tomasz S. Tkaczyk, "Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy," Opt. Express 17, 12293-12308 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol. 11(6), 250–257 (2001). [CrossRef] [PubMed]
  2. S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004). [CrossRef] [PubMed]
  3. M. A. Rizzo, and D. W. Piston, “Fluorescent Protein Tracking and Detection in Live Cells,” in Live Cell Imaging: A Laboratory Manual, D. Spector and R. Goldman, eds. (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, 2004).
  4. F. A. Kruse, “Visible-Infrared Sensors and Case Studies,” in Remote Sensing for the Earth Science: Manual of Remote Sensing (3 rd ed.), Renz and N. Andrew, eds. (John Wiley & Sons, NY, 1999).
  5. D. Landgrebe, “Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data,” in Information Processing for Remote Sensing, C. H. Chen, ed. (World Scientific Publishing Company, River Edge, NY, 1999).
  6. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [CrossRef] [PubMed]
  7. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002). [CrossRef] [PubMed]
  8. V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007). [CrossRef]
  9. W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008). [CrossRef] [PubMed]
  10. D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Matinez, A. D. Aragon, and M. W. Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Spectral Imaging: Instrumentation, Applications, and Analysis, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jensen, eds., Proc. SPIE 2959, 55–66 (2003).
  11. C. Zeiss, Germany, “LSM 510 META Product Brochure”. http://www.zeiss.com .
  12. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  13. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001). [CrossRef] [PubMed]
  14. ChromoDynamics, Inc., Orlando, FL, “HSi-300 Hyperspectral Imaging System Data Sheet”. http://www.chromodynamics.net/ .
  15. Cambridge Research and Instrumentation, Inc., Cambridge, MA, “VARISPEC Liquid Crystal Tunable Filters Brochure”. http://www.cri-inc.com/
  16. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996). [CrossRef]
  17. D. Y. Hsu, J. W. Lin, and S. Y. Shaw, “Wide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications,” Appl. Opt. 44(9), 1529–1532 (2005). [CrossRef] [PubMed]
  18. S. A. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47(28), F71–76 (2008). [CrossRef] [PubMed]
  19. H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002). [CrossRef] [PubMed]
  20. A. Bodkin, A. I. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U. S. Patent 20060072109A1 (2006).
  21. B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001). [CrossRef] [PubMed]
  22. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007). [CrossRef] [PubMed]
  23. A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–51 (2008). [CrossRef] [PubMed]
  24. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001). [CrossRef] [PubMed]
  25. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009). [CrossRef] [PubMed]
  26. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996). [CrossRef]
  27. S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006). [CrossRef]
  28. F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004). [CrossRef]
  29. J. A. Smith, “Basic principles of integral field spectroscopy,” N. Astron. Rev. 50(4-5), 244–251 (2006). [CrossRef]
  30. F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006). [CrossRef]
  31. “Mechanisms of 3D intercellular signaling in mammary epithelial cells in response to low dose, low-LET radiation: Implications for the radiation-induced bystander effect,” Biological Sciences Division Research Highlights, Pacific Northwest National Laboratory (2004). http://www.pnl.gov/
  32. W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006). [CrossRef]
  33. C. M. Dubbeldam, D. J. Robertson, D. A. Ryder, and R. M. Sharples, “Prototyping of Diamond Machined Optics for the KMOS and JWST NIRSpec Integral Field Units,”, ” in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, D. Lemke, eds., Proc. SPIE 6273, 62733F (2006).
  34. H. E. Bennett, J. M. Bennett, and E. J. Ashley, “Infrared Reflectance of Evaporated Aluminum Films,” J. Opt. Soc. Am. 52(11), 1245–1250 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited