OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12385–12396

Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-µm probe

Masahiro Yamanari, Yiheng Lim, Shuichi Makita, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12385-12396 (2009)
http://dx.doi.org/10.1364/OE.17.012385


View Full Text Article

Acrobat PDF (1011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-sensitive optical coherence tomography (PS-OCT) can measure cross-sectional and volumetric images of birefringence in fibrous tissues that provides additional contrast to the intensity images. In this study, we develop polarization-sensitive swept-source OCT (PS-SS-OCT) at 1 µm for deep penetration of the sclera and lamina cribrosa in the posterior part of human eyes. A calibration method for polarization mode dispersion of a circulator, which is employed to conserve the optical power of the interferometer and achieve system sensitivity sufficient for retinal imaging is demonstrated. The A-scan rate, the axial resolution, and the sensitivity of the PS-SS-OCT are 28,000 Hz, 11.0 µm, 94.2 dB, respectively. The posterior part of the eyes of a healthy male subject are measured in vivo. Phase-retardation images show birefringence of deep sclera and lamina cribrosa and enhance the contrast which is not visible in the intensity images. In addition, unlike conventional OCT, our PS-SS-OCT showed polarization-insensitive intensity images, in which an artifact created by the birefringence of sclera has been successfully eliminated.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 18, 2009
Revised Manuscript: June 29, 2009
Manuscript Accepted: July 1, 2009
Published: July 7, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Masahiro Yamanari, Yiheng Lim, Shuichi Makita, and Yoshiaki Yasuno, "Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-µm probe," Opt. Express 17, 12385-12396 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12385


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef]
  4. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  5. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004). [CrossRef]
  6. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007). [CrossRef]
  7. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008). [CrossRef]
  8. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.
  9. E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008). [CrossRef]
  10. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, University of Twente (2005).
  11. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-5-2421.
  12. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008). [CrossRef]
  13. E. G¨otzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina," Opt. Express 17, 4151-4165 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4151.
  14. M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5892>.
  15. M. Zhao and J. A. Izatt, "Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging," Opt. Lett. 34, 205-207 (2009). [CrossRef]
  16. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, "Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography," Opt. Express 17, 3980-3996 (2009). URLhttp://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3980.
  17. M. Pircher, E. G¨otzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-5940.
  18. M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006). [CrossRef]
  19. E. Gotzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Retinal pigment epithelium segmentation bypolarization sensitive optical coherencetomography," Opt. Express 16, 16416-16428 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-21-16410.
  20. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
  21. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef]
  23. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef]
  24. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  25. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004). [CrossRef]
  26. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher,W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
  27. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
  28. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007). [CrossRef]
  29. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406
  30. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, "High-speed, high-resolution Fourierdomain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33, 2479-2481 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-21-2479.
  31. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009). [CrossRef]
  32. B. Povaˇzay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on threedimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4134.
  33. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
  34. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
  35. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049.
  36. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008). [CrossRef]
  37. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
  38. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
  39. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
  40. American National Standards Institute, American national standard for safe use of lasers z136.1 (Laser Institute of America, Orlando, FL, 2000).
  41. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004). [CrossRef]
  42. R. R. Allingham, K. F. Damji, S. Freedman, S. E. Moroi, and G. Shafranov, eds., Shields’ Textbook of Glaucoma, 5th ed. (Lippincott Williams & Wilkins, 2005).
  43. J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002). [CrossRef]
  44. X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004). [CrossRef]
  45. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the human eye: an atlas and textbook (Saunders, 1971).
  46. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16390-16399 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
  47. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  48. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005). [CrossRef]
  49. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-14-6502
  50. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  51. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3820 KB)     
» Media 2: AVI (13718 KB)     
» Media 3: AVI (3844 KB)     
» Media 4: AVI (13978 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited