OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12455–12469

Three-Dimensional Computation of Focused Beam Propagation through Multiple Biological Cells

Matthew S. Starosta and Andrew K. Dunn  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12455-12469 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The FDTD method was used to simulate focused Gaussian beam propagation through multiple inhomogeneous biological cells. To our knowledge this is the first three dimensional computational investigation of a focused beam interacting with multiple biological cells using FDTD. A parametric study was performed whereby three simulated cells were varied by organelle density, nuclear type and arrangement of internal cellular structure and the beam focus depth was varied within the cluster of cells. Of the organelle types investigated, it appears that the cell nuclei are responsible for the greatest scattering of the focused beam in the configurations studied. Additional simulations to determine the optical scattering from 27 cells were also run and compared to the three cell case. No significant degradation of two-photon lateral imaging resolution was predicted to occur within the first 40 µm of imaging depth.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.5850) Scattering : Scattering, particles
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 19, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: June 28, 2009
Published: July 8, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Matthew S. Starosta and Andrew K. Dunn, "Three-Dimensional Computation of Focused Beam Propagation through Multiple Biological Cells," Opt. Express 17, 12455-12469 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. Strickler, and W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248(4951), 73-76 (1990). [CrossRef]
  2. W. Denk and K. Svoboda, "Photon upmanship: Why multiphoton imaging is more than a gimmick," Neuron 18(3), 351-357 (1997). [CrossRef]
  3. X. Deng and M. Gu, "Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation," Appl. Opt. 42(16), 3321-3329 (2003). [CrossRef]
  4. C.-Y. Dong, K. Koenig, and P. So, "Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium," J. Biomed. Opt. 8(3), 450-459 (2003). [CrossRef]
  5. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39(7), 1194-1201 (2000). [CrossRef]
  6. X. Gan and M. Gu, "Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media," Opt. Lett. 24(11), 741-743 (1999). [CrossRef]
  7. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two-photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Methods 112(2), 205 (2001). [CrossRef]
  8. P. Theer and W. Denk, "On the fundamental imaging-depth limit in two-photon microscopy," J. Opt. Soc. Am. A 23(12), 3139-3149 (2006). [CrossRef]
  9. K. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14(3), 302-307 (1966).
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood MA, 2005).
  11. A. Dunn and R. Richards-Kortum, "Three-dimensional computation of light scattering from cells," IEEE J. Sel. Top. Quantum Electron. 2(4), 898-905 (1996).
  12. C. Liu and C. E. Capjack, "Effects of cellular fine structure on scattered light pattern," IEEE Trans. Nanobiosci. 5(2), 76-82 (2006). [CrossRef]
  13. J. Q. Lu, P. Yang, and X. H. Hu, "Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method," J. Biomed. Opt.  10, 024,022 (2005). [CrossRef]
  14. X. Li, A. Taflove, and V. Backman, "Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures," IEEE J. Sel. Top. Quantum Electron. 11(4), 759-765 (2005).
  15. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105(51), 20,118-20,123 (2008).
  16. R. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13(10), 3707-3718 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3707. [CrossRef]
  17. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, "Numerical Modelling of Optical Trapping," Comp. Phys. Comm. 142, 468-471 (2001). [CrossRef]
  18. W. Sun, S. Pan, and Y. Jiang, "Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method," J. Mod. Opt. 53(18), 2691-2700 (2006). [CrossRef]
  19. K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13(22), 8866-8874 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-22-8866. [CrossRef]
  20. R.W. Ziolkowski, "FDTD modeling of Gaussian beam interactions with metallic and dielectric nano-structures," in Proc. 2004 URSI International Symposium on Electromagnetic Theory, pp. 27-29 (2004).
  21. J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127(2), 363-379 (1996). [CrossRef]
  22. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat. 23(4), 377-382 (1981). [CrossRef]
  23. I. R. Capoglu, A. Taflove, and V. Backman, "Generation of an incident focused light pulse in FDTD," Opt. Express 16(23), 19,208-19,220 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19208.
  24. W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11(23), 3160-3170 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3160 [CrossRef]
  25. J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam," J. Appl. Phys. 66, 2800 (1989). [CrossRef]
  26. A. Brunsting and P. F. Mullaney, "Differential Light Scattering from Spherical Mammalian Cells," Biophys. J. 14(6), 439 (1974). [CrossRef]
  27. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1(2), 200-211 (1996). [CrossRef]
  28. A. Taflove and M. Brodwin, "Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations," IEEE Trans. Microwave Theory Tech. 23(8), 623-630 (1975). [CrossRef]
  29. M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, "Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches," Adv. Drug Del. Rev. 58(7), 788-808 (2006). [CrossRef]
  30. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, 1st ed. (Plenum Press, 1995).
  31. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38(16), 3651-3661 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited