OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12627–12640

Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser

Kevin Ke, Chenan Xia, Mohammed N. Islam, Michael J. Welsh, and Michael J. Freeman  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12627-12640 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We identify and differentially damage lipids and proteins using wavelengths between 2.6 and 3.8 μm from a fiber-based supercontinuum (SC) laser. Absorption spectroscopy of the constituents of normal artery and atherosclerotic plaque, including adipose tissue, macrophages and foam cells, are measured by a SC laser in the mid-infrared. By using the laser light within the C-H fatty acid and cholesterol esters absorption band, we also demonstrate differential damage of lipid-rich adipose tissue without damaging the protein-rich blood vessel wall. The experiments use a novel SC laser that is all-fiber-integrated with no moving parts, covers a continuous spectrum ranging from ~0.8 to beyond 4.2 µm, and outputs a time-averaged power scalable up to 10.5 W.

© 2009 OSA

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 6, 2009
Revised Manuscript: June 11, 2009
Manuscript Accepted: June 23, 2009
Published: July 20, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Kevin Ke, Chenan Xia, Mohammed N. Islam, Michael J. Welsh, and Michael J. Freeman, "Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser," Opt. Express 17, 12627-12640 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007). [CrossRef]
  2. H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008). [CrossRef] [PubMed]
  3. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004). [CrossRef]
  4. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007). [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008). [CrossRef]
  6. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33(3), 285–287 (2008). [CrossRef] [PubMed]
  7. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008). [CrossRef] [PubMed]
  8. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]
  9. B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205–3214 (2003). [CrossRef] [PubMed]
  10. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  11. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008). [CrossRef]
  12. K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998). [CrossRef] [PubMed]
  13. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006). [CrossRef] [PubMed]
  14. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009). [CrossRef]
  15. A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004). [CrossRef]
  16. R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991). [CrossRef] [PubMed]
  17. D. Kritchevsky, “Dietary-protein, cholesterol and atherosclerosis-a review of the early history,” J. Nutr. 125, S589–S593 (1995).
  18. T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990). [CrossRef] [PubMed]
  19. J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).
  20. P. Libby, “Atherosclerosis: The new view,” Sci. Am. 286, 47–55 (2002). [CrossRef]
  21. J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006). [CrossRef] [PubMed]
  22. T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998). [PubMed]
  23. P. R. Moreno, B. J. Marshik, and J. E. Muller, “Diffuse reflectance near-infrared spectroscopy as a clinical technique to detect high-risk atherosclerotic plaques,” in Handbook of the Vulnerable Plaque, R. Waksman and P. W. Serruys, eds. (Taylor & Francis, 2004), pp. 205–218.
  24. L. Wang, J. Chapman, R. A. Palmer, O. van Ramm, and B. Mizaikoff, “Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis,” J. Biomed. Opt. 12, 024006–1-11 (2007).
  25. J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988). [CrossRef] [PubMed]
  26. G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited