OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12660–12667

Terahertz transmission properties of an individual slit in a thin metallic plate

J. W. Lee, T. H. Park, Peter Nordlander, and Daniel M. Mittleman  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12660-12667 (2009)
http://dx.doi.org/10.1364/OE.17.012660


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the terahertz transmission properties through a single slit in a thin metallic film. The properties are studied by comparing the transmissions of TE- and TM-polarized electromagnetic waves over a broad spectral range from the geometrical regime to the subwavelength limit. In the geometrical regime, the remarkable terahertz transmission due to guided modes is observed even without the contribution of surface waves. Whereas in the subwavelength limit, the surface charge oscillations associated with the TM-polarized guided mode give rise to strong transmission enhancement. The nature of the mechanisms for the terahertz transmission is elucidated using theoretical simulations of the near-field distributions and electromagnetic energy flow.

© 2009 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6690) Optics at surfaces : Surface waves
(260.3910) Physical optics : Metal optics
(300.6270) Spectroscopy : Spectroscopy, far infrared
(310.2790) Thin films : Guided waves

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 24, 2009
Revised Manuscript: May 26, 2009
Manuscript Accepted: June 17, 2009
Published: July 20, 2009

Citation
J. W. Lee, T. H. Park, Peter Nordlander, and Daniel M. Mittleman, "Terahertz transmission properties of an individual slit in a thin metallic plate," Opt. Express 17, 12660-12667 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12660


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  4. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  5. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89(6), 063901 (2002). [CrossRef] [PubMed]
  6. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  7. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004). [CrossRef] [PubMed]
  8. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004). [CrossRef]
  9. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88(7), 071114 (2006). [CrossRef]
  10. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005), http://www.opticsexpress.org/oe/abstract.cfm?URI=oe-13-18-7028 . [CrossRef] [PubMed]
  11. A. Pimenov and A. Loidl, “Experimental demonstration of artificial dielectrics with a high index of refraction,” Phys. Rev. B 74(19), 193102 (2006). [CrossRef]
  12. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, Ch. Lienau, and D. S. Kim, “Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory,” Opt. Express 14(26), 12637–12643 (2006), http://www.opticsexpress.org/oe/abstract.cfm?URI=oe-14-26-12637 . [CrossRef] [PubMed]
  13. T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008). [CrossRef]
  14. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007). [CrossRef] [PubMed]
  15. Y. Zhang, K. Meng, and Y. Wang, “Resonant band gaps from a narrow slit at terahertz frequencies,” in Proceedings of Electromagnetics Research Symposium, (The Electromagnetics Academy, Cambridge, MA, 2008), pp. 397–400.
  16. Q. Xing, S. Li, Z. Tian, D. Liang, N. Zhang, L. Lang, L. Chai, and Q. Wang, “Enhanced zero-order transmission of terahertz radiation pulses through very deep metallic gratings with subwavelength slits,” Appl. Phys. Lett. 89(4), 041107 (2006). [CrossRef]
  17. J. Bromage, S. Radic, G. P. Agrawal, C. R. Stroud, P. M. Fauchet, and R. Sobolewski, “Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness,” J. Opt. Soc. Am. B 15(7), 1953 (1998). [CrossRef]
  18. M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990). [CrossRef]
  19. Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000). [CrossRef]
  20. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002). [CrossRef]
  21. A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77(5), 053810 (2008). [CrossRef]
  22. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin,1988).
  23. X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76(3), 035802 (2007). [CrossRef]
  24. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036608 (2003). [CrossRef] [PubMed]
  25. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  26. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  27. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]
  28. J. R. Suckling, J. R. Sambles, and C. R. Lawrence, “Remarkable zeroth-order resonant transmission of microwaves through a single subwavelength metal slit,” Phys. Rev. Lett. 95(18), 187407 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited