OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12668–12677

Phase shift keyed systems based on a gain switched laser transmitter

Prince M. Anandarajah, Kai Shi, John O’Carroll, Aleksandra Kaszubowska, Richard Phelan, Liam P. Barry, Andrew D. Ellis, Philip Perry, Douglas Reid, Brian Kelly, and James O’Gorman  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12668-12677 (2009)
http://dx.doi.org/10.1364/OE.17.012668


View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of −33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10−1 in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system.

© 2009 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(320.5550) Ultrafast optics : Pulses
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 1, 2009
Revised Manuscript: June 2, 2009
Manuscript Accepted: June 24, 2009
Published: July 20, 2009

Citation
Prince M. Anandarajah, Kai Shi, John O’Carroll, Aleksandra Kaszubowska, Richard Phelan, Liam P. Barry, Andrew D. Ellis, Philip Perry, Douglas Reid, Brian Kelly, and James O’Gorman, "Phase shift keyed systems based on a gain switched laser transmitter," Opt. Express 17, 12668-12677 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, and F. Rosca, “Deployment of 40 Gb/s Systems: Technical and Cost Issues,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2004), ThE6.
  2. A. Sano and Y. Miyamoto, “Technologies for Ultrahigh Bit-Rate WDM Technologies,” in Laser and Electro-Optics Society Annual Metting, pp. 290–291 (2007).
  3. M. Saruwatari, “All-Optical Signal Processing for Terabit/second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000). [CrossRef]
  4. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006). [CrossRef]
  5. G. Charlet, “Progress in Optical Modulation Formats for High-Bit Rate WDM Transmissions,” IEEE J. Sel. Top. Quantum Electron. 12(4), 469–483 (2006). [CrossRef]
  6. P. J. Winzer, and R. Essiambre, “Advanced Modulation Formats,” in proc. ECOC 2003, Th2.6.1, pp 1002–1003.
  7. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008). [CrossRef]
  8. A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005). [CrossRef]
  9. C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004). [CrossRef]
  10. A. H. Gnauck, “40-Gb/s RZ Differential Phase Shift Keyed Transmission,” in Optical Fiber Communications Conference and Exposition and the National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2003), ThE1.
  11. C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser and H. G. Weber, “40 GHz Semiconductor Mode Locked Laser Pulse Source for 160 Gbit/s RZ-DPSK Data Transmission,” in proc. ECOC 2005, Tu1.5.3, pp. 167–168.
  12. D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998). [CrossRef]
  13. A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999). [CrossRef]
  14. S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005). [CrossRef]
  15. P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006). [CrossRef]
  16. P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004). [CrossRef]
  17. A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004). [CrossRef]
  18. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009). [CrossRef]
  19. P. M. Anandarajah, L. P. Barry, A. M. Kaszubowska-Anandarajah, J. O’Gorman, J. O’Carroll, C. Herbert, R. Phelan, and A. F. Duke, “Highly Coherent Picosecond Pulse Generation with Sub-PS Jitter and High SMSR by Gain Switching Discrete Mode Laser Diodes at 10 GHz Line Rate,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, San Diego, CA, 2009), OWj3.
  20. A. D. Ellis, F. C. Garcia-Gunning, and T. Healy, “Coherent WDM: The Achievement of High Information Spectral Density through Phase Control within the Transmitter,”in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2005), OThR4.
  21. A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  22. P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002). [CrossRef]
  23. Q. Zhang, and C. R. Menyuk, “An Exact Analysis of RZ- vs. NRZ-DPSK Performance in ASE Noise Limited High Speed Optical Systems,” in proc. LEOS 2007, TuE1.3, pp. 242–243.
  24. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980). [CrossRef]
  25. M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited