OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12777–12784

Enhanced laser action of Perylene-Red doped polymeric materials

I. García-Moreno, A. Costela, M. Pintado-Sierra, V. Martín, and R. Sastre  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12777-12784 (2009)
http://dx.doi.org/10.1364/OE.17.012777


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The laser action of Perylene-Red doped in linear, crosslinked, fluorinated and sililated polymeric materials is reported. The purity of dye was found to be a key factor to enhance its solid-state laser behaviour. The samples were transversely pumped at 532 nm, with 5.5 mJ/pulse and 10 Hz repetition rate. Perylene-Red doped copolymers of methyl methacrylate with a 10 vol% proportion of 2,2,2-trifluoroethyl-methacrylate exhibited a lasing efficiency of 26% with a high photostability since the dye laser output remained at the same level after 100,000 pump pulses in the same position of the sample. This lasing behaviour is, to the best of our knowledge, the highest achieved to date for organic, inorganic, and hybrid materials doped with Perylene-Red.

© 2009 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(160.5470) Materials : Polymers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 8, 2009
Revised Manuscript: June 17, 2009
Manuscript Accepted: June 19, 2009
Published: July 13, 2009

Citation
I. García-Moreno, A. Costela, M. Pintado-Sierra, V. Martín, and R. Sastre, "Enhanced laser action of Perylene-Red doped polymeric materials," Opt. Express 17, 12777-12784 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000). [CrossRef]
  2. P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002). [CrossRef]
  3. Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004). [CrossRef] [PubMed]
  4. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, (Molecular Probes Inc., Eugene, 1989).
  5. Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984). [CrossRef]
  6. A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982). [CrossRef]
  7. M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000). [CrossRef]
  8. T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001). [CrossRef]
  9. R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002). [CrossRef] [PubMed]
  10. R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006). [CrossRef] [PubMed]
  11. M. Canva, P. Georges, J.-F. Perelgritz, A. Brum, F. Chaput, and J.-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34(3), 428–431 (1995). [CrossRef] [PubMed]
  12. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, and J. P. Boilot, “Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels,” Appl. Opt. 36(27), 6760–6763 (1997). [CrossRef]
  13. A. Costela, I. García-Moreno, and R. Sastre, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic Press, New York, 2001), Vol. 7, Chap. 4.
  14. Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).
  15. G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003). [CrossRef]
  16. Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004). [CrossRef]
  17. T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004). [CrossRef]
  18. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45(16), 3846–3851 (2006). [CrossRef] [PubMed]
  19. R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989). [CrossRef]
  20. J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990). [CrossRef]
  21. A. Dubois, M. Canva, A. Brun, F. Chaput, and J. P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35(18), 3193–3199 (1996). [CrossRef] [PubMed]
  22. M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005). [CrossRef]
  23. A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000). [CrossRef]
  24. A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001). [CrossRef]
  25. A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004). [CrossRef]
  26. O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006). [CrossRef]
  27. Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007). [CrossRef]
  28. I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977). [CrossRef]
  29. M. D. Rahn and T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34(36), 8260–8271 (1995). [CrossRef] [PubMed]
  30. A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007). [CrossRef]
  31. J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002). [CrossRef]
  32. J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited