OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12821–12828

The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system

S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12821-12828 (2009)
http://dx.doi.org/10.1364/OE.17.012821


View Full Text Article

Enhanced HTML    Acrobat PDF (360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A strongly coupled quantum dot-micropillar cavity system is studied under variation of the excitation power. The characteristic double peak spectral shape of the emission with a vacuum Rabi splitting of 85 µeV at low excitation transforms gradually into a single broad emission peak when the excitation power is increased. Modelling the experimental data by a recently published formalism [Laussy et al., Phys. Rev. Lett. 101, 083601 (2008)] yields a transition from strong coupling towards weak coupling which is mainly attributed to an excitation power driven decrease of the exciton-photon coupling constant.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: May 6, 2009
Revised Manuscript: June 17, 2009
Manuscript Accepted: June 23, 2009
Published: July 13, 2009

Citation
S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, "The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system," Opt. Express 17, 12821-12828 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997). [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  4. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef]
  5. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008). [CrossRef] [PubMed]
  6. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009). [CrossRef]
  7. L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006). [CrossRef]
  8. F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008). [CrossRef]
  9. Y. Yamamoto, T. Tassone, and H. Cao, "Biexcitonic Effects in Microcavities," in Semiconductor Cavity Quantum Electrodynamics, G. Höhler, ed. (Springer, Berlin/Heidelberg 2000), pp. 4958.
  10. Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006). [CrossRef]
  11. E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963). [CrossRef]
  12. L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008). [CrossRef]
  13. E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008). [CrossRef]
  14. J.-M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, Topics Appl. Phys. 90, P. Michler, ed. (Springer, Berlin/Heidelberg 2003), pp. 269315.
  15. L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999). [CrossRef]
  16. Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).
  17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008). [CrossRef]
  18. K. J. Vahala, "Optical Microcavities," Nature 424, 839-847 (2003). [CrossRef] [PubMed]
  19. A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005). [CrossRef]
  20. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  21. S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006). [CrossRef]
  22. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996). [CrossRef] [PubMed]
  23. I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007). [CrossRef]
  24. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000). [CrossRef] [PubMed]
  25. A. Imamoglu, "Phase-space filling and stimulated scattering of composite bosons," Phys. Rev. B 57, R4195- R4197 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited