OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12900–12909

Single-shot digital holography by use of the fractional Talbot effect

Lluís Martínez-León, María Araiza-E, Bahram Javidi, Pedro Andrés, Vicent Climent, Jesús Lancis, and Enrique Tajahuerce  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12900-12909 (2009)
http://dx.doi.org/10.1364/OE.17.012900


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

© 2009 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Holography

History
Original Manuscript: May 22, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: June 28, 2009
Published: July 13, 2009

Citation
Lluís Martínez-León, María Araiza-E, Bahram Javidi, Pedro Andrés, Vicent Climent, Jesús Lancis, and Enrique Tajahuerce, "Single-shot digital holography
by use of the fractional Talbot effect," Opt. Express 17, 12900-12909 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), 85–101 (2002). [CrossRef]
  2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  3. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  4. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  5. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  6. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef]
  8. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef]
  9. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  10. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44(19), 3977–3984 (2005). [CrossRef] [PubMed]
  11. Y. Frauel, T. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three Dimensional Imaging and Display Using Computational Holographic Imaging,” Proc. IEEE 94(3), 636–654 (2006). [CrossRef]
  12. B. Javidi, S. Yeom, and I. Moon, “Real-time 3D sensing, visualization and recognition of biological microorganisms,” Proc. IEEE 94(3), 550–567 (2006). [CrossRef]
  13. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25(1), 28–30 (2000). [CrossRef]
  14. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39(35), 6595–6601 (2000). [CrossRef]
  15. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27(5), 321–323 (2002). [CrossRef]
  16. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25(9), 610–612 (2000). [CrossRef]
  17. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40(23), 3877–3886 (2001). [CrossRef]
  18. Y. Frauel, E. Tajahuerce, M.-A. Castro, and B. Javidi, “Distortion-tolerant 3D object recognition using digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  19. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005). [CrossRef] [PubMed]
  20. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006). [CrossRef] [PubMed]
  21. A. Hettwer, J. Kranz, and J. Schwider, “Three channel phase-shifting interferometer using polarization-optics and a diffraction grating,” Opt. Eng. 39(4), 960–966 (2000). [CrossRef]
  22. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  23. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005). [CrossRef] [PubMed]
  24. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004). [CrossRef]
  25. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45(13), 2995–3002 (2006). [CrossRef] [PubMed]
  26. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), 183–189 (2008). [CrossRef]
  27. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006). [CrossRef] [PubMed]
  28. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37(8), 2357–2360 (1997). [CrossRef]
  29. B. Javidi and D. Kim, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Opt. Lett. 30(3), 236–238 (2005). [CrossRef] [PubMed]
  30. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images: I,” J. Opt. Soc. Am. 55(4), 373–381 (1965). [CrossRef]
  31. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional Talbot planes,” Opt. Lett. 15(5), 288–290 (1990). [CrossRef] [PubMed]
  32. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29(29), 4337–4340 (1990). [CrossRef] [PubMed]
  33. V. Arrizón and J. Ojeda-Castañeda, “Multilevel phase gratings for array illuminators,” Appl. Opt. 33(25), 5925–5931 (1994). [CrossRef] [PubMed]
  34. J. Werterholm, J. Turunen, and J. Huttunen, “Fresnel diffraction in fractional Talbot planes: a new formulation,” J. Opt. Soc. Am. A 11(4), 1283–1290 (1994). [CrossRef]
  35. C. Zhou and L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1-2), 40–44 (1995). [CrossRef]
  36. A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001). [CrossRef]
  37. A. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971). [CrossRef]
  38. N. H. Salama, D. Patrignani, L. De Pasquale, and E. E. Sicre, “Wavefront sensor using the Talbot effect,” Opt. Laser Technol. 31(4), 269–272 (1999). [CrossRef]
  39. S. De Nicola, P. Ferraro, G. Coppola, A. Finizio, G. Pierattini, and S. Grilli, “Talbot self-image effect in digital holography and its application to spectrometry,” Opt. Lett. 29(1), 104–106 (2004). [CrossRef] [PubMed]
  40. A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 1–7 (2008).
  41. V. Arrizón, G. Rojo-Velázquez, and Victor Arrizón and Gustavo Rojo-Velázquez, “Fractional Talbot field of finite gratings: compact analytical formulation,” J. Opt. Soc. Am. A 18(6), 1252–1255 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited