OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13140–13150

Shape-dependent two-photon absorption in semiconductor nanocrystals

Xiaobo Feng and Wei Ji  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13140-13150 (2009)
http://dx.doi.org/10.1364/OE.17.013140


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report our theoretical investigation onto the shape dependence of two-photon absorption (TPA) in semiconductor nanocrystals (NCs). Based on a four-band model under effective mass approximation, we have developed a simple analytical theory capable of providing a quantitative explanation of the recent TPA measurement on CdS nanorods [Appl. Phys. Lett. 94, 103117 (2009)]. With this theory, we have systematically revealed the characteristics of TPA in CdSe and ZnO NCs with four different shapes: sphere, cube, cylinder and cuboid. Due to the splitting of degenerate energy levels caused by the decreased degree of symmetry, nanocuboids and nanocubes exhibit greater TPA cross-sections than nanocylinders and nanospheres of similar sizes, respectively. Similarly, nanocuboids and nanocylinders possess larger TPA cross-sections than nanocubes and nanospheres of similar lateral dimension, respectively. Given TPA-allowed transitions, nanocuboids show stronger size dependence than nanocylinders. The size dependence of TPA cross-section is more sensitive to the lateral size than the longitudinal size in the cases of nanocylinders and nanocuboids.

© 2009 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 1, 2009
Revised Manuscript: July 12, 2009
Manuscript Accepted: July 12, 2009
Published: July 16, 2009

Citation
Xiaobo Feng and Wei Ji, "Shape-dependent two-photon absorption in semiconductor nanocrystals," Opt. Express 17, 13140-13150 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum qots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005). [CrossRef] [PubMed]
  2. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coherent manipulation of coupled electron spins in semiconductor quantum dots," Science 309, 2180-2184 (2005). [CrossRef] [PubMed]
  3. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003). [CrossRef] [PubMed]
  4. J. Staromlynska, T. J. McKay, and P. Wilson, "Broadband optical limiting based on excited state absorption in Pt:ethynyl," J. Appl. Phys. 88, 1726-1732 (2000). [CrossRef]
  5. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, "In vivo imaging of quantum dots encapsulated in phospholipid micelles," Science 298, 1759-1762 (2002). [CrossRef] [PubMed]
  6. G. S. He, K. T. Yong, Q. D. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, "Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range," Opt. Express 15, 12818-12833 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12818. [CrossRef] [PubMed]
  7. A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996). [CrossRef]
  8. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, "Size dependence of exciton fine structure in CdSe quantum dots," Phys. Rev. B 53, 16347-16354 (1996). [CrossRef]
  9. D. J. Norris and M. G. Bawendi, "Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots," Phys.Rev. B 53, 16338-16346 (1996). [CrossRef]
  10. S. Kumar and T. Nann, "Shape control of II-VI semiconductor nanomaterials," Small 2, 316-329 (2006). [CrossRef] [PubMed]
  11. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, "Controlled growth of tetrapod-branched inorganic nanocrystals," Nat. Mater. 2, 382-385 (2003). [CrossRef] [PubMed]
  12. S. M. Lee, S. N. Cho, and J. Cheon, "Anisotropic shape control of colloidal inorganic nanocrystals," Adv. Mater. 15, 441-444 (2003). [CrossRef]
  13. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, "Colloidal nanocrystal heterostructures with linear and branched topology," Nature 430, 190-195 (2004). [CrossRef] [PubMed]
  14. Y. Yin and A. P. Alivisatos, "Colloidal nanocrystal synthesis and the organic-inorganic interface," Nature 437, 664-670 (2005). [CrossRef] [PubMed]
  15. A. G. Kanaras, C. Sonnichsen, H. T. Liu, and A. P. Alivisatos, "Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures," Nano Lett. 5, 2164-2167 (2005). [CrossRef] [PubMed]
  16. P. D. Cozzoli, T. Pellegrino, and L. Manna, "Synthesis, properties and perspectives of hybrid nanocrystal structures," Chem. Soc. Rev. 35, 1195-1208 (2006). [CrossRef] [PubMed]
  17. P. S. Nair, K. P. Fritz, and G. D. Scholes, "Evolutionary shape control during colloidal quantum-dot growth," Small 3, 481-487 (2007). [CrossRef] [PubMed]
  18. J. Li and L. W. Wang, "Shape effects on electronic states of nanocrystals," Nano Lett. 3, 1357-1363 (2003). [CrossRef]
  19. J. Kim, P. S. Nair, C. Y. Wong, and G. D. Scholes, "Sizing up the exciton in complex-shaped semiconductor nanocrystals," Nano Lett. 7, 3884-3890 (2007). [CrossRef]
  20. M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, "Excited states in self-organized InAs/GaAs quantum dots: Theory and experiment," Appl. Phys. Lett. 68, 979-981 (1996). [CrossRef]
  21. D. Tari, M. De Giorgi, F. Della Sala, L. Carbone, R. Krahne, L. Manna, R. Cingolani, S. Kudera, and W. J. Parak, "Optical properties of tetrapod-shaped CdTe nanocrystals," Appl. Phys. Lett. 87, 224101-224103 (2005). [CrossRef]
  22. A. V. Fedorov, A. V. Baranov, and K. Inoue, "Two-photon transitions in systems with semiconductor quantum dots," Phys. Rev. B 54, 8627-8632 (1996). [CrossRef]
  23. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and CruzC H B , "Two-photon absorption in CdTe quantum dots," Opt. Express 13, 6460-6467 (2005), http://www.opticsinfobase.org/oe/ abstract.cfm?uri=oe-13-17-6460. [CrossRef] [PubMed]
  24. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325-075332 (2007). [CrossRef]
  25. M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest, "Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals," Phys. Rev. B 53, 12629-12632 (1996). [CrossRef]
  26. Y. Qu, W. Ji, Y. Zheng, and J. Y. Ying, "Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots," Appl. Phys. Lett. 90, 133112-133114 (2007). [CrossRef]
  27. V. V. Nikesh, A. Dharmadhikari, H. Ono, S. Nozaki, G. S. Kumar, and S. Mahamuni, "Optical nonlinearity of monodispersed, capped ZnS quantum particles," Appl. Phys. Lett. 84, 46024604-46024606 (2004). [CrossRef]
  28. C. Gan, M. Xiao, D. Battaglia, N. Pradhan, and X. G Peng, "Size dependence of nonlinear optical absorption and refraction of Mn-doped ZnSe nanocrystals," Appl. Phys. Lett. 91, 201103-201105 (2007). [CrossRef]
  29. G. C. Xing, W. Ji, Y. G. Zheng, and J. Y. Ying, "Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy," Appl. Phys. Lett. 93, 241114-241116 (2008). [CrossRef]
  30. W. Ji, Y. Qu, J. Mi, Y. Zheng, and J. Y. Ying, "Wavelength scaling for multiphoton absorption in semiconductor quantum dots," Chinese Opt. Lett. 3, S203-S204 (2005).
  31. L. Y. Pan, N. Tamai, K. Kamada, and S. Deki, "Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region," Appl. Phys. Lett. 91, 051902-051904 (2007). [CrossRef]
  32. X. Li, J. Embden, W. M. Chon, and M. Gu, "Enhanced two-photon absorption of CdS nanocrystal rods," Appl. Phys.Lett. 94, 103117-103119 (2009). [CrossRef]
  33. N. L. Thomas, E. Herz, O. Schöps and U. Woggon, "Exciton Fine Structure in Single CdSe Nanorods," Phys. Rev. Lett. 94, 016803-016806 (2005). [CrossRef] [PubMed]
  34. C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, "Multiphoton absorption induced amplified spontaneous emission from biocatalyst-synthesized ZnO nanorods," Appl. Phys. Lett. 92, 233116-233118 (2008). [CrossRef]
  35. T. Yatsui, S. Sangu, K. Kobayashi, T. Kawazoe, M. Ohtsu, J. Yoo, and G. C. Yi, "Nanophotonic energy up conversion using ZnO nanorod double-quantum-well structures," Appl. Phys. Lett. 94, 083113-083115 (2009). [CrossRef]
  36. V. Nathan, A. H. Guenther, and S. S. Mitra, "Review of multiphoton absorption in crystalline solids," J. Opt. Soc. Am. B 2, 294-316 (1985). [CrossRef]
  37. E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin and J. T. Devreese, "Development of an eight-band theory for quantum dot heterostructures," Phys. Rev. B 64, 245328-245343 (2001). [CrossRef]
  38. P. Lawaetz, "Valence-band parameters in cubic semiconductors," Phys. Rev. B 4, 3460-3467 (1971). [CrossRef]
  39. A. L. Efros and A. V. Arondina, "Band-edge absorption and luminescence of nonspherical nanometer-size crystals," Phys. Rev. B 47, 10005-10007 (1993). [CrossRef]
  40. D. Ninno, G. Iadonisi, and F. Buonocore, "Carrier localization and photoluminescence in porous silicon" Solid State Commun. 112, 521-525 (1999). [CrossRef]
  41. F. Buonocore, D. Ninno, and G. Iadonisi, "Localized states in arbitrarily shaped quantum wire: a variation-perturbation technique," Phys. Stat. Sol.(b) 225, 343-352 (2001). [CrossRef]
  42. G. Cantele, D. Ninno, and G. Iadonisi, "Confined states in ellipsoidal quantum dots," J. Phys.: Condens. Matter 12, 9019-9036 (2000). [CrossRef]
  43. G. Cantele, D. Ninno, and G. Iadonisi, "Calculation of the infrared optical transitions in semiconductor ellipsoidal quantum dots," Nano Lett. 1, 121-124 (2001). [CrossRef]
  44. Y. Kayanuma, "Wannier excitons in low-dimensional microstructures: Shape dependence of the quantum size effect," Phys. Rev. B 44, 13085-13088 (1991). [CrossRef]
  45. S. L. Goff and B. Stébé, "Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors," Phys. Rev. B 47, 1383-1391 (1993). [CrossRef]
  46. M. B. Mohamed, C. Burda, and M. A. El-Sayed, "Shape dependent ultrafast relaxation dynamics of CdSe nanocrystals: Nanorods vs Nanodots," Nano Lett. 1, 589-593 (2001). [CrossRef]
  47. L. S. Li, J. T. Hu, W. D. Yang, and A. P. Alivisatos, "Band gap variation of size- and shape-controlled colloidal CdSe quantum rods," Nano Lett. 1, 349-351 (2001). [CrossRef]
  48. D. L. Yao, G. Zhang, and B. W. Li, "A universal expression of band gap for silicon nanowires of different cross-section geometries," Nano Lett. 8, 4557-4561 (2008). [CrossRef]
  49. J. X. Cao, X. G. Gong, J. X. Zhong, and R. Q. Wu, "Sharp corners in the cross section of ultrathin Si nanowires," Phys. Rev. Lett. 97, 136105-136108 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited