OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13246–13254

In-fiber polarimeters based on hollow-core photonic bandgap fibers

Haifeng Xuan, Wei Jin, Min Zhang, Jian Ju, and Yanbiao Liao  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 13246-13254 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In-fiber polarimeters or polarization mode interferometers (PMIs) are fabricated by cascading two CO2-laser-induced in-fiber polarizers along a piece of hollow-core photonic bandgap fiber. Since the two interfering beams are the orthogonal polarizations of the fundamental mode, which are tightly confined to the core and have much lower loss than higher order modes, the PMIs can have either short (e.g., a few millimeters) or long (tens of meters or longer) device length without significantly changing the fringe contrast and hence provide design flexibility for applications required different device lengths. As examples of potential applications, the PMIs have been experimentally demonstrated for wavelength-dependent group birefringence measurement; and for strain, temperature and torsion sensors. The PMI sensors are quite sensitive to strain but relatively insensitive to temperature as compared with fiber Bragg grating sensors. The PMIs function as good directional torsion sensors that can determine the rate and direction of twist at the same time.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystals

Original Manuscript: June 15, 2009
Revised Manuscript: July 11, 2009
Manuscript Accepted: July 12, 2009
Published: July 17, 2009

Haifeng Xuan, Wei Jin, Min Zhang, Jian Ju, and Yanbiao Liao, "In-fiber polarimeters based on hollow-core photonic bandgap fibers," Opt. Express 17, 13246-13254 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature," Lightwave Technology, Journal of 12, 170-177 (1994). [CrossRef]
  2. T. Graham, W. Douglas, W. C. Michie, and C. Brian, "In-line mode splitter applied to a dual polarimeter in elliptical core fibre," C. Brian, and D. C. J. Julian, eds. (SPIE, 1994), pp. 339-342.
  3. B. K. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "Nonlinear strain response of two-mode fiber-optic interferometer," Opt. Lett. 21, 934-936 (1996). [CrossRef] [PubMed]
  4. S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," Lightwave Technology, Journal of 8, 23-33 (1990). [CrossRef]
  5. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, "Simultaneous measurement of strain and temperature: error analysis," Optical Engineering 36, 598-609 (1997). [CrossRef]
  6. Q1. C. K. kirkendall, and A. Dandridge, "Overview of high performance fibre-optic sensing," Journal of physics. D, Applied physics 37, 197-216 (2004). [CrossRef]
  7. E. Udd, Fiber optic smart structures (Wiley-Interscience 1995).
  8. R. B. Dyott, J. Bello, and V. A. Handerek, "Indium-Coated D-Shaped-Fiber Polarizer," Optics Letters 12, 287-289 (1987). [CrossRef] [PubMed]
  9. H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber," Optics Express 15, 5711-5720 (2007). [CrossRef] [PubMed]
  10. L. S. Pieter, "Long-period grating Michelson refractometric sensor," Measurement Science and Technology 15, 1576-1580 (2004). [CrossRef]
  11. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004). [CrossRef] [PubMed]
  12. Y.-J. Kim, U.-C. Paek, and B. H. Lee, "Measurement of refractive-index variation with temperature by use of long-period fiber gratings," Opt. Lett. 27, 1297-1299 (2002). [CrossRef]
  13. H. Y. Choi, K. S. Park, and B. H. Lee, "Photonic crystal fiber interferometer composed of a long period f iber grating and one point collapsing of air holes," Opt. Lett. 33, 812-814 (2008). [CrossRef] [PubMed]
  14. Q2. J. Jian, J. Wei, and H. Hoi Lut, "Compact In-Fiber Interferometer Formed by Long-Period Gratings in Photonic Crystal Fiber," Photonics Technology Letters, IEEE 20, 1899-1901 (2008). [CrossRef]
  15. J. Jian, N. M. Li, J. Wei, and H. Hoi Lut, "Photonic bandgap fiber tapers and in-fiber interferometric sensors," Optics Letters (2009). [PubMed]
  16. Q3. H. F. Xuan, W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M.H. Chen, "Hollow-core photonic bandgap fiber polarizer," Optics Letters 33 (2008).
  17. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  18. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  19. M. Wegmuller, M. Legre, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Optics Express 13, 1457-1467 (2005). [CrossRef] [PubMed]
  20. G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Optics Express 11, 1613-1620 (2003). [CrossRef] [PubMed]
  21. Y. P. Wang, W. Jin, J. Ju, H. F. Xuan, H. L. Ho, L. M. Xiao, and D. N. Wang, "Long period gratings in air-core photonic bandgap fibers," Optics Express 16, 2784-2790 (2008). [CrossRef] [PubMed]
  22. S. C. Rashleigh, "Measurement of fiber birefringence by wavelength scanning: effect of dispersion," Opt. Lett. 8, 336-338 (1983). [CrossRef] [PubMed]
  23. X. Chen, M.-J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, J. Carberry, L. Zenteno, and K. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004). [CrossRef] [PubMed]
  24. V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, "Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes," (AIP, 2009), p. 131102.
  25. C. Leon, Time-frequency analysis: theory and applications (Prentice-Hall, Inc., 1995).
  26. O. Frazao, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber," Appl. Opt. 47, 4841-4848 (2008). [CrossRef] [PubMed]
  27. B. H. Lee, and J. Nishii, "Self-interference of long-period fibre grating and its application as temperature sensor," (IEE, 1998), pp. 2059-2060.
  28. X. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, "Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point," Optics Communications 258, 159-163 (2006). [CrossRef]
  29. E. Li, "Temperature compensation of multimode-interference-based fiber devices," Optics Letters 32, 2064-2066 (2007). [CrossRef] [PubMed]
  30. Y.-P. Wang, J.-P. Chen, and Y.-J. Rao, "Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses," J. Opt. Soc. Am. B 22, 1167-1172 (2005). [CrossRef]
  31. L. Chunn-Yenn, A. W. Lon, and C. Gia-Wei, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," Lightwave Technology, Journal of 19, 1159-1168 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited