OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13526–13531

T-shaped plasmonic array as a narrow-band thermal emitter or biosensor

Chih-Ming Wang, Yia-Chung Chang, Mohammed Nadhim Abbas, Ming-Hsiung Shih, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13526-13531 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A T-shaped plasmonic array is proposed for application as an effective thermal emitter or biosensor. The reflection and thermal radiation properties of a T-shaped array are investigated theoretically. The angular dependent reflectance spectrum shows a clear resonant dip at 0.36eV for full polar angles. No other significant localized resonant mode is found in the investigated spectral range from 0.12eV to 0.64eV. According to the Kirchhoff’s law, the thermal radiation of the proposed structure can lead to a sharp peak at 3.5µm with low sideband emission. We have also found that the T-shaped structure filled with organic material such as PMMA with different thicknesses (10 nm -50 nm) can lead to significant shift of the resonance wavelength. Thus, the T-shaped structure can also be used as a good sensor for organic materials.

© 2009 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 2, 2009
Revised Manuscript: July 17, 2009
Manuscript Accepted: July 17, 2009
Published: July 22, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Yia-Chung Chang, Chih-Ming Wang, Mohammed N. Abbas, Ming-Hsiung Shih, and Din Ping Tsai, "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, 1981).
  2. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999). [CrossRef]
  3. P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005). [CrossRef]
  4. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005). [CrossRef]
  5. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002). [CrossRef]
  6. I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008). [CrossRef]
  7. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003). [CrossRef]
  9. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006). [CrossRef] [PubMed]
  10. V. Yannopapas "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006). [CrossRef]
  11. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005). [CrossRef]
  12. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006). [CrossRef]
  13. T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006). [CrossRef]
  14. E. Wolf, "Non-cosmological red-shifts of spectral lines," Nature 326, 363-365 (1987). [CrossRef]
  15. E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996). [CrossRef]
  16. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007). [CrossRef] [PubMed]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  19. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002) [CrossRef] [PubMed]
  20. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009) [CrossRef] [PubMed]
  21. D. H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition 1973), Chap. 2

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited