OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13576–13587

Wyoming Cloud Lidar: instrument description and applications

Zhien Wang, Perry Wechsler, William Kuestner, Jeffrey French, Alfred Rodi, Brent Glover, Matthew Burkhart, and Donal Lukens  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13576-13587 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.

© 2009 OSA

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.5855) Scattering : Scattering, polarization

ToC Category:
Remote Sensing and Sensors

Original Manuscript: May 4, 2009
Revised Manuscript: June 19, 2009
Manuscript Accepted: June 19, 2009
Published: August 3, 2009

Zhien Wang, Perry Wechsler, William Kuestner, Jeffrey French, Alfred Rodi, Brent Glover, Matthew Burkhart, and Donal Lukens, "Wyoming Cloud Lidar: instrument description and applications," Opt. Express 17, 13576-13587 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Wielicki, R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, “Mission to planet earth: role of clouds and radiation in climate,” Bull. Am. Meteorol. Soc. 76(11), 2125–2154 (1995). [CrossRef]
  2. IPCC, “Climate Change 2007 The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller eds. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp, 2007).
  3. R. D. Cess, M. H. Zhang, W. J. Ingram, G. P. Potter, V. Alekseev, H. W. Barker, E. Cohen-Solal, R. A. Colman, D. A. Dazlich, A. D. Del Genio, M. R. Dix, V. Dymnikov, M. Esch, L. D. Fowler, J. R. Fraser, V. Galin, W. L. Gates, J. J. Hack, J. T. Kiehl, H. Le Treut, K. K.-W. Lo, B. J. Mcavaney, V. P. Meleshko, J.-J. Morcrette, D. A. Randall, E. Roeckner, J.-F. Royer, M. E. Schlesinger, P. V. Sporyshev, B. Timbal, E. M. Volodin, K. E. Taylor, W. Wang, and R. T. Wetherald, “Cloud feedback in atmospheric general circulation models: An update,” J. Geophys. Res. 101(D8), 12791–12794 (1996). [CrossRef]
  4. S. Bony and J.-L. Dufresne, “Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models,” Geophys. Res. Lett. 32(20), L20806 (2005), doi:. [CrossRef]
  5. G. Asrar, J. A. Kaye, and P. Morel, “NASA research strategy for earth system science: Climate component,” Bull. Am. Meteorol. Soc. 82(7), 1309–1330 (2001). [CrossRef]
  6. G. L. Stephens, D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O’Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, and C. Mitrescu, “The CloudSat mission and the A-TRAIN: A new dimension to space-based observations of clouds and precipitation,” Bull. Am. Meteorol. Soc. 83, 1771–1790 (2002). [CrossRef]
  7. T. Ackerman and G. Stokes, “The Atmospheric Radiation Measurement Program,” Phys. Today 56(1), 38–45 (2003). [CrossRef]
  8. J. M. Fritsch and R. E. Carbone, “Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy,” Bull. Am. Meteorol. Soc. 85(7), 955–965 (2004). [CrossRef]
  9. P. H. Hildebrand, W. C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, “The ELDORA/ASTRAIA Airborne Doppler Weather Radar: High-Resolution Observations from TOGA COARE,” Bull. Am. Meteorol. Soc. 77(2), 213–232 (1996). [CrossRef]
  10. G. M. Heymsfield, S. W. Bidwell, P. Racette, I. J. Caylor, S. Ameen, S. Nicholson, W. Boncyk, L. Miller, D. Vandemark, and L. R. Dod, “The EDOP radar system on the high-altitude NASA ER-2 aircraft,” J. Atmos. Ocean. Technol. 13(4), 795–809 (1996). [CrossRef]
  11. D. Leon, G. Vali, and M. Lothon, “Dual-Doppler analysis in a single plane from an airborne platform. Part I: Technique,” J. Atmos. Ocean. Technol. 23(1), 3–21 (2006). [CrossRef]
  12. G. M. Heymsfield, J. M. Shepherd, S. W. Bidwell, W. C. Boncyk, I. J. Caylor, S. Ameen, and W. S. Olson, “Structure of Florida thunderstorms using high-altitude aircraft radiometer and radar observations,” J. Appl. Meteorol. 35(10), 1736–1762 (1996). [CrossRef]
  13. G. Vali, R. Kelly, J. French, S. Haimov, D. Leon, R. McIntosh, and A. Pazmany, “Finescale structure and microphysics of coastal stratus,” J. Atmos. Sci. 55(24), 3540–3564 (1998). [CrossRef]
  14. B. Stevens, D. H. Lenschow, G. Vali, H. Gerber, A. Bandy, B. Blomquist, J.-L. Brenguier, C. S. Bretherton, F. Burnet, T. Campos, S. Chai, I. Faloona, D. Friesen, S. Haimov, F. Laursen, D. K. Lilly, S. M. Loehrer, S. P. Malinowski, B. Morley, M. D. Petters, D. C. Rogers, L. Russell, V. Savic-Jovcic, J. R. Snider, D. Straub, M. J. Szumowski, H. Takagi, D. C. Thornton, M. Tschudi, C. Twohy, M. Wetzel, and M. C. van Zanten, “Dynamics and Chemistry of Marine Stratocumulus–DYCOMS-II,” Bull. Am. Meteorol. Soc. 84(5), 579–593 (2003). [CrossRef]
  15. R. Damiani, G. Vali, and S. Haimov, “The structure of thermals in cumulus from airborne dual-Doppler radar observations,” J. Atmos. Sci. 63(5), 1432–1450 (2006). [CrossRef]
  16. M. J. McGill, D. L. Hlavka, W. D. Hart, V. S. Scott, J. Spinhirne, and B. Schmid, “Cloud physics lidar: instrument description and initial measurement results,” Appl. Opt. 41(18), 3725–3734 (2002). [CrossRef] [PubMed]
  17. S. Ismail, E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, and P. B. Russell, “LASE measurements of aerosol and water vapor profiles during TARFOX,” J. Geophys. Res. 105(D8), 9903–9916 (2000). [CrossRef]
  18. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001). [CrossRef]
  19. S. Y. Matrosov, B. W. Orr, R. A. Kropfli, and J. B. Snider, “Retrieval of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements,” J. Appl. Meteorol. 33(5), 617–626 (1994). [CrossRef]
  20. G. G. Mace, T. A. Ackerman, P. Minnis, and D. F. Young, “Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data,” J. Geophys. Res. 103(D18), 23207–23216 (1998). [CrossRef]
  21. Z. Wang and K. Sassen, “Cirrus cloud microphysical property retrieval using lidar and radar measurements: I algorithm description and comparison with in situ data,” J. Appl. Meteorol. 41(3), 218–229 (2002). [CrossRef]
  22. Z. Wang, K. Sassen, D. Whiteman, and B. Demoz, “Studying altocumulus plus virga with ground-based active and passive remote sensors,” J. Appl. Meteorol. 43(3), 449–460 (2004). [CrossRef]
  23. D. P. Donovan and A. Van Lammeren, “Cloud effective particle size and water content profile retrievals using combined lidar and radar observations, 1. Theory and examples,” J. Geophys. Res. 106(D21), 27425–27448 (2001). [CrossRef]
  24. H. Okamoto, S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai, “An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar,” J. Geophys. Res. 108(D7), 4226 (2003). [CrossRef]
  25. J. Delanoë and R. J. Hogan, “A variatioanl scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer,” J. Geophys. Res. 113(D7), 7204 (2008), doi:. [CrossRef]
  26. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991). [CrossRef]
  27. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1683 (2001). [CrossRef]
  28. J. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211 (1981). [CrossRef] [PubMed]
  29. J. D. Lindberg, W. J. Lentz, E. M. Measure, and R. Rubio, “Lidar determinations of extinction in stratus clouds,” Appl. Opt. 23(13), 2172–2177 (1984). [CrossRef] [PubMed]
  30. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37(12), 2464–2472 (1998). [CrossRef]
  31. J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud Top Liquid Water from Lidar Observations of Marine Stratocumulus,” J. Appl. Meteorol. 28(2), 81–90 (1989). [CrossRef]
  32. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, “The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory,” Opt. Express 15(9), 5327–5332 (2007). [CrossRef] [PubMed]
  33. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34(30), 7019–7031 (1995). [CrossRef] [PubMed]
  34. J. D. Locatelli and P. V. Hobbs, “Fall speeds and masses of solid precipitation particles,” J. Geophys. Res. 79(15), 2185–2197 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited