OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13601–13608

Single-laser, one beam, tetrahedral magneto-optical trap

Matthieu Vangeleyn, Paul F. Griffin, Erling Riis, and Aidan S. Arnold  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13601-13608 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have realized a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

© 2009 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: May 13, 2009
Revised Manuscript: June 23, 2009
Manuscript Accepted: June 24, 2009
Published: July 23, 2009

Matthieu Vangeleyn, Paul F. Griffin, Erling Riis, and Aidan S. Arnold, "Single-laser, one beam, tetrahedral magneto-optical trap," Opt. Express 17, 13601-13608 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008). [CrossRef]
  2. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003). [CrossRef]
  3. W. P. Schleich and H. Walther, Elements of Quantum Information (Wiley-VCH, 2007). [CrossRef]
  4. J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999). [CrossRef]
  5. J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999). [CrossRef]
  6. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001). [CrossRef] [PubMed]
  7. W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001). [CrossRef] [PubMed]
  8. J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).
  9. C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005). [CrossRef]
  10. A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006). [CrossRef]
  11. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006). [CrossRef]
  12. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, 1177-1179 (1996). [CrossRef] [PubMed]
  13. G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).
  14. S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, arXiv:0905.0777.
  15. C. Chesman, E. G. Lima, F. A. M. de Oliveira, S. S. Vianna, and J. W. R. Tabosa, "Two- and four-beam magnetooptical trapping of neutral atoms," Opt. Lett. 19, 1237-1239 (1994). [CrossRef] [PubMed]
  16. F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991). [CrossRef] [PubMed]
  17. Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991). [CrossRef]
  18. K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992). [CrossRef] [PubMed]
  19. C. J. Foot, Atomic Physics, (Oxford University Press, 2005).
  20. C. J. Myatt, N. R. Newbury, and C. E. Wieman, "Simplified atom trap by using direct microwave modulation of a diode laser," Opt. Lett. 18, 649-651 (1993). [CrossRef] [PubMed]
  21. P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).
  22. M. Vangeleyn, P. F. Griffin, I. McGregor, E. Riis, and A. S. Arnold, in preparation.
  23. M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001). [CrossRef]
  24. H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003). [CrossRef]
  25. D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein. [CrossRef]
  26. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002). [CrossRef] [PubMed]
  27. T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008). [CrossRef]
  28. http://www.thindiamond.com/NaDiaProbes.asp
  29. P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007). [CrossRef] [PubMed]
  30. F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (653 KB)     
» Media 2: MOV (622 KB)     
» Media 3: MOV (624 KB)     
» Media 4: MOV (415 KB)     
» Media 5: MOV (570 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited